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1. Introduction

Noncommutative spaces in physics

• A charged particle in a strong constant magnetic field (Bz)

L ∼ Bz (ẋ(t)y(t)− ẏ(t)x(t)) =⇒ [x(t), y(t)] ∼ i~/Bz

• String theories

Low energy effective theories on D-branes in a constant
background NS −NS B field.

Bµν ∼ noncommutative parameter

• Matrix models

noncommutative coordinates:

[xµ, xν] 6= 0 =⇒ N ×N matrices X̂µ
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Properties of field theories on N.C. spaces

• UV/IR mixing and nonlocality

B Low energy (IR) scales appear in high energy (UV)
phenomena (e.g. UV divergences).

Ex. φ4 theory on N.C. R4

one-loop self-energy:

Γ(2)(p) = p2 +M2 +
cg

(θ2p2 + 1/Λ2)2
+ · · ·

B Open Wilson lines become observables in N.C. Yang-Mills
theories.

W [C12; k] =

∫
d4x1Tr

[
Pe

i
∫
C12

A
]
∗
∗ eik·x2

Length of the open Wilson line ∼ energy scale
x1 − x2 ∼ kθ
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• N.C. soliton and Instanton

Nonperturbative effects characteristic in N.C. field theories

Ex. N.C. solitons in a scalar field theory on R4

L =
1

2θ
∂µφ∂

µφ+ V (φ)

In the large θ limit, the equation of motion becomes

∂V (φ)

∂φ
= 0

Nontrivial solutions (N.C. solitons) can be constructed based on
the projection operator,

φ ∼ λP, (P ∗ P = P, λ : constant)

More models of tractable field theories on N.C. spaces are needed
to investigate further these properties.
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Construction of N.C. space

• Moyal product on Rd

(f ∗ g)(x) = e
i
2θ

ij∂x
i ∂

y
j f(x)g(y)

∣∣∣
y=x

, [xi, xj]∗ = iθij

• Fuzzy spaces from matrix models

Ex. Fuzzy S2

[X̂i, X̂j] = iεijkX̂k,

X̂i (i = 1, 2, 3) : (2L+ 1)× (2L+ 1)matrices

fields on N.C. space:

φ(x) =⇒ (2L+ 1)× (2L+ 1) matrix φ̂(X̂)

action: S[X̂] = Tr L(φ̂)

• Geometric quantization

A generalization of the canonical quantization

5



Deformation Quantization (weak sense)

Deformation Quantization is defined as follows. F is defined as a
set of formal power series of ~:

F :=
{
f
∣∣∣ f =

∑
k

fk~k
}
.

A star product is defined as

f ∗ g =
∑

Ck(f, g)~k

s.t. the product satisfies the following conditions.

1. ∗ is associative product.

2. Ck is a bidifferential operator.

3. C0(f, g) = fg, C1(f, g)− C1(g, f) = i{f, g}.
4. f ∗ 1 = 1 ∗ f .
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2. Star product with separation of variables

Kähler manifold with a Kähler potential Φ and a Kähler 2-form ω

ω = igij̄dz
i ∧ dz̄j, gij̄ = ∂i∂j̄Φ,

where ∂i = ∂/∂zi, ∂j̄ = ∂/∂zj̄.

∗ is called a star product with separation of variables when

a ∗ f = af

for holomorphic function a and

f ∗ b = fb

for anti-holomorphic function b.
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• A. V. Karabegov showed that for arbitrary ω, there exists a star
product with separation of variables ∗.

A. V. Karabegov, Commun. Math. Phys. 180, 745 (1996)

In this method for making deformation quantization, a star product
is constructed as a formal series of differential operators.

star product differential operator

f ∗ g = Lf g : left ∗ multiplication by f

g ∗ f = Rf g : right ∗ multiplication by f

Lf (Rf) is a differential operator corresponding to a left (right) ∗
multiplication by f :

Lf =
∞∑

n=0

~nAn,

where

An = an,α(f)
∏
i

(
Dī

)αi

, (Dī = gīj∂j).
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D’s satisfy the following relations:[
Dī, Dj̄

]
= 0,

[
Dī, ∂j̄Φ

]
= δij

It is required that Lf satisfies

Lf1 = f ∗ 1 = f,

Lf (Lgh) = f ∗ (g ∗ h) = (f ∗ g) ∗ h = LLfgh.
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Lf which has these properties is determined by the following
conditions,

[Lf , ∂īΦ+ ~∂ī] = 0,

and A0 = f .

Note:

Because of R∂īΦ
= ∂īΦ+ ~∂ī, this condition is equivalent to

[Lf , R∂īΦ
] g = f ∗ (g ∗ ∂īΦ)− (f ∗ g) ∗ ∂īΦ = 0.

This condition is equivalent to the recursion relations,

[An, ∂īΦ] = [∂ī, An−1],

at each order of ~.
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If one obtains the operator Lz̄i,

Lz̄ig = z̄i ∗ g,

Lf coorrsponding to an arbitrary function f is given by

Lf =
∑
α

1

α

(
∂

∂z̄

)α

f (Lz̄ − z̄)
α
.

where α is a multi-index, α = (α1, · · · , αm).

It is not easy to derive explicit expressions of star products in all
order of ~ by solving the recursion relations.
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3. N.C. deformation of CPN

Inhomogeneous coordinates zi (i = 1, 2, · · · , N)

Kähler potential of CPN :

Φ = ln
(
1 + |z|2

)
, (|z|2 =

∑
i

ziz̄i)

Metric (gij̄) : ds2 = 2gij̄dz
idz̄j,

gij̄ = ∂i∂j̄Φ =
(1 + |z|2)δij − zjz̄i

(1 + |z|2)2

The following relations simplify our calculations for Lf in the case
of CPN ,

∂ī1∂ī2 · · · ∂īnΦ = (−1)n−1(n− 1)! ∂ī1Φ∂ī2Φ · · · ∂īnΦ,

Riemann tensor: Rij̄kl̄ = −gij̄gkl̄ − gil̄gkj̄.
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Construction of Lz̄l (Lz̄lf = z̄l ∗ f)

Lz̄l = z̄l + ~Dl̄ +
∞∑

n=2

~nAn,

where An (n ≥ 2) is a formal series of Dk̄.

• We assume that An has the following form,

An =

n∑
m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄.

From [Lz̄l, ∂īΦ+ ~∂ī] = 0, An are recursively determined by

[An, ∂īΦ] = [∂ī, An−1] , (n ≥ 2)

where A1 = Dl̄.
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• After some calculations, we found the following recursion
relation

a(n)m = a
(n−1)
m−1 + (m− 1)a(n−1)

m .

and a
(n)
2 = a

(n−1)
2 = · · · = a

(2)
2 = 1.

• To solve these equations, we introduce a generating function

αm(t) ≡
∞∑

n=m

tna(n)m , (m ≥ 2).

From the recursion relation, αm(t) is determined as

αm(t) = tm
m−1∏
n=1

1

1− nt
=

Γ(1−m+ 1
t)

Γ(1 + 1
t)

, (m ≥ 2).

The coefficient a
(n)
m is related to the Stirling number of the

second kind S(n, k),

a(n)m = S(n− 1,m− 1).
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• Summarizing the above calculations, Lz̄l becomes

Lz̄l = z̄l + ~Dl̄ +
∞∑

n=2

~n
n∑

m=2

a(n)m ∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄

= z̄l +

∞∑
m=1

αm(~)∂j̄1Φ · · · ∂j̄m−1
ΦDj̄1 · · ·Dj̄m−1Dl̄.

Similarly, the operator Rzi corresponding to the right ∗
multiplication of zi is obtained.

• Star products among zi and z̄i,

zi ∗ zj = zizj, zi ∗ z̄j = ziz̄j, z̄i ∗ z̄j = z̄iz̄j,

z̄i ∗ zj = z̄izj + ~δij(1 + |z|2)2F1

(
1, 1; 1− 1/~;−|z|2

)
+

~
1− ~

z̄izj(1 + |z|2)2F1

(
1, 2; 2− 1/~;−|z|2

)
.
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• Lf for an arbitrary function f

Lf =
∑
α

1

α

(
∂

∂z̄

)α

f (Lz̄ − z̄)
α

We can derive an explicit formula for Lf ,

Lf =

∞∑
n=0

αn(~)
n!

gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄n.

It is shown that Lf satisfies [Lf , ∂īΦ+ ~∂ī] = 0.

This star product on CPN is characterized by a single function
of ~, αn(~).
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• Leibniz rule for differentials

In general,
∂(f ∗ g) 6= (∂f) ∗ g + f ∗ (∂g).

The Killing vectors corresponding to the SU(N + 1) isometry
of CPN

La = ξia∂i + ξ īa∂ī, (a = 1, 2, · · · , (n+ 1)2 − 1),

[La, Lb] = ifabcLc, (fabc : structure constant of SU(N + 1))

The Leibniz rule holds with respective to the Killing vectors,

La(f ∗ g) = (Laf) ∗ g + f ∗ (Lag).

This property is important to construct actions of field theories
on the N.C. CPN which is invariant under the isometry.
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Comparison with other N.C. deformations for CPN

1. Bordemann, Brischle, Emmrich and Waldmann gave a star
product on CPN by performing the phase space reduction from
CN+1\{0}. Bordemann, et al, Lett. Math. Phys. 36 (1996), 357

f ∗B g = fg+

∞∑
m=1

~m
m∑
s=1

s∑
k=1

km−1(−1)m−k

s!(s− k)!(k − 1)!

(
|ζ|2

)s
× ∂sf

∂ζ̄A1 · · · ζ̄As

∂sg

∂ζA1 · · · ζAs
,

where ζAi, ζ̄Aj are the homogeneous coordinates of CPN .

We showed that this star product ∗B coincides with the one we
obtained,

f ∗B g = f ∗ g.
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2. Balachandran, Dolan, Lee, Martin and O’Connor derived an
star product on a fuzzy CPN by using matrix representations of
SU(N + 1). Balachandran, et al., J. Geom. Phys. 43, 184 (2002)

Their star product also coincides with the one we derived, if one
considers the specific case

• ~ = 1/L (L ∈ N : matrix size)
• star product in a function space spanned by

zi1 · · · zimz̄j1 · · · z̄jn
(1 + |z|2)L

, (m,n ≤ L).

Note: Lf can be rewritten by the use of the covariant derivatives on CPN

as
Lf =

∞∑
n=0

αn(~)
n!

gj̄1k1 · · · gj̄nkn
(
∇j̄1

· · · ∇j̄nf
)
∇k1 · · · ∇kn.

As far as we know, the origin of this coincidence of the star
products obtained by these different methods is not apparent at
this time.
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4. Fock representation

{zi, ∂jΦ | i, j = 1, 2, · · · , N} and {z̄i, ∂j̄Φ | i, j = 1, 2, · · · , N}
constitute 2N sets of the creation-annihilation operators under the
star product,[

∂iΦ, zj
]
∗ = ~δij,

[
zi, zj

]
∗ = 0, [∂iΦ, ∂jΦ]∗ = 0,[

z̄i, ∂j̄Φ
]
∗ = ~δij,

[
z̄i, z̄j

]
∗ = 0,

[
∂īΦ, ∂j̄Φ

]
∗ = 0.

Annihilation operators: ∂iΦ, z̄
j

Creation operators: zi, ∂j̄Φ

• e−Φ/~ = (1 + |z|2)−1/~ is the vacuum projection:

∂iΦ ∗ e−Φ/~ = z̄j ∗ e−Φ/~ = 0, e−Φ/~ ∗ zi = e−Φ/~ ∗ ∂j̄Φ = 0,

e−Φ/~ ∗ e−Φ/~ = e−Φ/~.
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• A class of functions is constructed by acting the creation-
annihilation operators on the vacuum projection:

Mi1···im;j1···jn := cmnz
i1 ∗ · · · ∗ zim∗e−Φ/~∗z̄j1 ∗ · · · ∗ z̄jn

= cmnz
i1 · · · zimz̄j1 · · · z̄jn/(1 + |z|2)1/~,

where we choose cmn = 1/
√

m!n!αm(~)αn(~).

• These functions form a closed algebra:

Mi1···im;j1···jn ∗Mk1···kr;l1···ls= δnrδ
k1···kn
j1···jn Mi1···im;l1···ls,

δk1···knj1···jn =
1

n!

[
δk1j1 · · · δ

kn
jn

+ permutations of (j1, · · · , jn)
]
.

• Projection operators

Pi1···in = Mi1···in;i1···in

Pi1···im ∗ Pj1···jn = δmnδ
i1···in
j1···jnPi1···in
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zk ∗Mi1···im;j1···jn =

√
m+ 1

−m+ 1/~
Mki1···im;j1···jn,

∂k̄Φ ∗Mi1···im;j1···jn = ~
√
(m+ 1)(−m+ 1/~)Mki1···im;j1···jn,

∂kΦ ∗Mi1···im;j1···jn = ~
√

−m+ 1 + 1/~
m

m∑
l=1

δkilMi1···îl···im;j1···jn,

z̄k ∗Mi1···im;j1···jn =
1√

m(−m+ 1 + 1/~)

m∑
l=1

δkilMi1···îl···im;j1···jn,

Mi1···im;j1···jn ∗ z
k =

1√
n(−n+ 1 + 1/~)

n∑
l=1

δkjlMi1···im;j1···ĵl···jn,

Mi1···im;j1···jn ∗ ∂k̄Φ = ~
√

−n+ 1 + 1/~
n

n∑
l=1

δkjlMi1···im;j1···ĵl···jn

Mi1···im;j1···jn ∗ ∂kΦ = ~
√
(n+ 1)(−n+ 1/~)Mi1···im;j1···jnk,

Mi1···im;j1···jn ∗ z̄
k =

√
n+ 1

−n+ 1/~
Mi1···im;j1···jnk.
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5. Explicit formulas for a star product on CHN

• Similarly, explicit expressions of star products on complex
hyperbolic spaces CHN are derived by using the deformation
quantization with separation of variables.

CHN : noncompact Kähler manifold

Kähler potential: Φ = − log(1− |z|2)

metric: ds2 = 2
(1− |z|2)δij + z̄izj

(1− |z|2)2
dzidzj̄

• star product:

f ∗ g =

∞∑
n=0

βn(~)
n!

gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

) (
Dk̄1 · · ·Dk̄ng

)
,

where βn(~) = −αn(−~) = (−1)n−1Γ(1/~)
Γ(n+1/~) .
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• Fock representation:

The following functions form a closed algebra:

Ni1···im;j1···jn = c′mnz
i1 · · · zimz̄j1 · · · z̄jn(1− |z|2)1/~,

Ni1···im;j1···jn ∗Nk1···kr;l1···ls = δnrδ
k1···kn
j1···jn Ni1···im;l1···ls.
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6. Summary and discussion

• We obtained explicit expressions of star products on CPN by
using the deformation quantization with separation of variables.

f ∗ g =
∞∑

n=0

αn(~)
n!

gj1k̄1 · · · gjnk̄n
(
Dj1 · · ·Djnf

)
Dk̄1 · · ·Dk̄ng.

• Fock representation

The following functions form a closed algebra under the star
product,

Mi1···im;j1···jm ∼ zi1 · · · zimz̄j1 · · · z̄jn
(1 + |z|2)1/~

Mi1···im;j1···jn ∗Mk1···kr;l1···ls = δnrδ
k1···kn
j1···jn Mi1···im;l1···ls.
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• Similarly, explicit expressions of star products on CHN are
derived by using the deformation quantization with separation
of variables.

B Star products on other Kähler manifolds

Ex. a locally symmetric Kähler manifold: ∇µRνρσ
λ = 0

Assumption:

Lfg =

∞∑
n=0

T j̄1···j̄n,k1···kn
n

(
∇j̄1

· · ·∇j̄nf
)
(∇k1 · · · ∇kng), (∇T = 0)

Condition: [Lf , ∂īΦ+ ~∂ī] = 0[
nT j̄1···j̄n,k1···kn

n gknī − ~T j̄1···j̄n−1,k1···kn−1
n−1 δj̄n

ī

− ~
n(n− 1)

2
T

j̄1···j̄n,k1···kn−2pq
n Rīpq

kn−1

]
×
(
∇j̄1

· · · ∇j̄nf
) (

∇k1 · · · ∇kn−1g
)
= 0.
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B Construction of field theories on N.C. CPN (or CHN)

Ex. scalar field:

φ =
∑

φi1···im;j1···jnMi1···im;j1···jn

Lagrangian density:
1

2
LaφLaφ+ V [φ]

N.C. soliton in the large noncommutativity limit ?

projection operators: Pi1···in = Mi1···in;i1···in
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