Explicit Formulas for Noncommutative $\mathbf{C} P^{N}$ and $\mathrm{C} H^{N}$

Hiroshi Umetsu with A. Sako and T. Suzuki Kushiro National College of Technology based on J. Math. Phys. 53, 073502 (2012) [arXiv:1204.4030]

Sep. 14, 2012, Belgrade, Serbia

1. Introduction

Noncommutative spaces in physics

- A charged particle in a strong constant magnetic field $\left(B_{z}\right)$

$$
L \sim B_{z}(\dot{x}(t) y(t)-\dot{y}(t) x(t)) \quad \Longrightarrow \quad[x(t), y(t)] \sim i \hbar / B_{z}
$$

- String theories

Low energy effective theories on D-branes in a constant background $N S-N S B$ field.
$B_{\mu \nu} \sim$ noncommutative parameter

- Matrix models
noncommutative coordinates:

$$
\left[x_{\mu}, x_{\nu}\right] \neq 0 \quad \Longrightarrow \quad N \times N \text { matrices } \hat{X}_{\mu}
$$

Properties of field theories on N.C. spaces

- UV/IR mixing and nonlocality
\triangleright Low energy (IR) scales appear in high energy (UV) phenomena (e.g. UV divergences).
Ex. ϕ^{4} theory on N.C. \mathbb{R}^{4} one-loop self-energy:

$$
\Gamma^{(2)}(p)=p^{2}+M^{2}+\frac{c g}{\left(\theta^{2} p^{2}+1 / \Lambda^{2}\right)^{2}}+\cdots
$$

\triangleright Open Wilson lines become observables in N.C. Yang-Mills theories.

$$
W\left[C_{12} ; k\right]=\int d^{4} x_{1} \operatorname{Tr}\left[P e^{i \int_{C_{12}} A}\right]_{*} * e^{i k \cdot x_{2}}
$$

Length of the open Wilson line \sim energy scale

$$
x^{1}-x^{2} \sim k \theta
$$

- N.C. soliton and Instanton

Nonperturbative effects characteristic in N.C. field theories
Ex. N.C. solitons in a scalar field theory on \mathbb{R}^{4}

$$
\mathcal{L}=\frac{1}{2 \theta} \partial_{\mu} \phi \partial^{\mu} \phi+V(\phi)
$$

In the large θ limit, the equation of motion becomes

$$
\frac{\partial V(\phi)}{\partial \phi}=0
$$

Nontrivial solutions (N.C. solitons) can be constructed based on the projection operator,

$$
\phi \sim \lambda P, \quad(P * P=P, \lambda: \text { constant })
$$

More models of tractable field theories on N.C. spaces are needed to investigate further these properties.

Construction of N.C. space

- Moyal product on \mathbb{R}^{d}

$$
(f * g)(x)=\left.e^{\frac{i}{2} \theta^{i j} \partial_{i}^{x} \partial_{j}^{y}} f(x) g(y)\right|_{y=x}, \quad\left[x^{i}, x^{j}\right]_{*}=i \theta^{i j}
$$

- Fuzzy spaces from matrix models

Ex. Fuzzy S^{2}

$$
\begin{aligned}
& {\left[\hat{X}_{i}, \hat{X}_{j}\right]=i \epsilon_{i j k} \hat{X}_{k}} \\
& \quad \hat{X}_{i}(i=1,2,3):(2 L+1) \times(2 L+1) \text { matrices }
\end{aligned}
$$

fields on N.C. space:

$$
\phi(x) \quad \Longrightarrow \quad(2 L+1) \times(2 L+1) \text { matrix } \hat{\phi}(\hat{X})
$$

action: $S[\hat{X}]=\operatorname{Tr} L(\hat{\phi})$

- Geometric quantization

A generalization of the canonical quantization

Deformation Quantization (weak sense)

Deformation Quantization is defined as follows. \mathcal{F} is defined as a set of formal power series of \hbar :

$$
\mathcal{F}:=\left\{f \mid f=\sum_{k} f_{k} \hbar^{k}\right\} .
$$

A star product is defined as

$$
f * g=\sum C_{k}(f, g) \hbar^{k}
$$

s.t. the product satisfies the following conditions.

1. $*$ is associative product.
2. C_{k} is a bidifferential operator.
3. $C_{0}(f, g)=f g$,
$C_{1}(f, g)-C_{1}(g, f)=i\{f, g\}$.
4. $f * 1=1 * f$.

2. Star product with separation of variables

Kähler manifold with a Kähler potential Φ and a Kähler 2-form ω

$$
\omega=i g_{i \bar{j}} d z^{i} \wedge d \bar{z}^{j}, \quad g_{i \bar{j}}=\partial_{i} \partial_{\bar{j}} \Phi
$$

where $\partial_{i}=\partial / \partial z^{i}, \partial_{\bar{j}}=\partial / \partial z^{\bar{j}}$.

* is called a star product with separation of variables when

$$
a * f=a f
$$

for holomorphic function a and

$$
f * b=f b
$$

for anti-holomorphic function b.

- A. V. Karabegov showed that for arbitrary ω, there exists a star product with separation of variables $*$.
A. V. Karabegov, Commun. Math. Phys. 180, 745 (1996)

In this method for making deformation quantization, a star product is constructed as a formal series of differential operators.
star product differential operator

$$
\begin{aligned}
f * g & =L_{f} g: \text { left } * \text { multiplication by } f \\
g * f & =R_{f} g: \text { right } * \text { multiplication by } f
\end{aligned}
$$

$L_{f}\left(R_{f}\right)$ is a differential operator corresponding to a left (right) $*$ multiplication by f :
where

$$
L_{f}=\sum_{n=0}^{\infty} \hbar^{n} A_{n}
$$

$$
A_{n}=a_{n, \alpha}(f) \prod_{i}\left(D^{\bar{i}}\right)^{\alpha_{i}}, \quad\left(D^{\bar{i}}=g^{\bar{i} j} \partial_{j}\right)
$$

D's satisfy the following relations:

$$
\left[D^{\bar{i}}, D^{\bar{j}}\right]=0, \quad\left[D^{\bar{i}}, \partial_{\bar{j}} \Phi\right]=\delta_{j}^{i}
$$

It is required that L_{f} satisfies

$$
\begin{aligned}
L_{f} 1 & =f * 1=f \\
L_{f}\left(L_{g} h\right) & =f *(g * h)=(f * g) * h=L_{L_{f} g} h
\end{aligned}
$$

L_{f} which has these properties is determined by the following conditions,

$$
\left[L_{f}, \partial_{\bar{i}} \Phi+\hbar \partial_{\bar{i}}\right]=0
$$

and $A_{0}=f$.
Note:
Because of $R_{\partial_{i} \Phi}=\partial_{\bar{i}} \Phi+\hbar \partial_{\bar{i}}$, this condition is equivalent to

$$
\left[L_{f}, R_{\partial_{\bar{i}} \Phi}\right] g=f *\left(g * \partial_{\bar{i}} \Phi\right)-(f * g) * \partial_{\bar{i}} \Phi=0
$$

This condition is equivalent to the recursion relations,

$$
\left[A_{n}, \partial_{\bar{i}} \Phi\right]=\left[\partial_{\bar{i}}, A_{n-1}\right]
$$

at each order of \hbar.

If one obtains the operator $L_{\bar{z}^{i}}$,

$$
L_{\bar{z}^{i}} g=\bar{z}^{i} * g
$$

L_{f} coorrsponding to an arbitrary function f is given by

$$
L_{f}=\sum_{\alpha} \frac{1}{\alpha}\left(\frac{\partial}{\partial \bar{z}}\right)^{\alpha} f\left(L_{\bar{z}}-\bar{z}\right)^{\alpha}
$$

where α is a multi-index, $\alpha=\left(\alpha_{1}, \cdots, \alpha_{m}\right)$.

It is not easy to derive explicit expressions of star products in all order of \hbar by solving the recursion relations.

3. N.C. deformation of $\mathrm{C} P^{N}$

Inhomogeneous coordinates $z^{i}(i=1,2, \cdots, N)$ Kähler potential of $\mathbb{C} P^{N}$:

$$
\Phi=\ln \left(1+|z|^{2}\right), \quad\left(|z|^{2}=\sum_{i} z^{i} \bar{z}^{i}\right)
$$

Metric $\left(g_{i \bar{j}}\right): \quad d s^{2}=2 g_{i \bar{j}} d z^{i} d \bar{z}^{j}$,

$$
g_{i \bar{j}}=\partial_{i} \partial_{\bar{j}} \Phi=\frac{\left(1+|z|^{2}\right) \delta_{i j}-z^{j} \bar{z}^{i}}{\left(1+|z|^{2}\right)^{2}}
$$

The following relations simplify our calculations for L_{f} in the case of $\mathbb{C} P^{N}$,

$$
\partial_{\bar{i}_{1}} \partial_{\bar{i}_{2}} \cdots \partial_{\bar{i}_{n}} \Phi=(-1)^{n-1}(n-1)!\partial_{\bar{i}_{1}} \Phi \partial_{\bar{i}_{2}} \Phi \cdots \partial_{\bar{i}_{n}} \Phi
$$

Riemann tensor: $R_{i \bar{j} k \bar{l}}=-g_{i \bar{j}} g_{k \bar{l}}-g_{i \bar{l}} g_{k \bar{j}}$.

Construction of $L_{\bar{z} l}$
 $$
\left(L_{\bar{z}} l f=\bar{z}^{l} * f\right)
$$

$$
L_{\bar{z}^{l}}=\bar{z}^{l}+\hbar D^{\bar{l}}+\sum_{n=2}^{\infty} \hbar^{n} A_{n}
$$

where $A_{n}(n \geq 2)$ is a formal series of $D^{\bar{k}}$.

- We assume that A_{n} has the following form,

$$
A_{n}=\sum_{m=2}^{n} a_{m}^{(n)} \partial_{\bar{j}_{1}} \Phi \cdots \partial_{\bar{j}_{m-1}} \Phi D^{\bar{j}_{1}} \cdots D^{\bar{j}_{m-1}} D^{\bar{l}}
$$

From $\left[L_{\bar{z}} l, \partial_{\bar{i}} \Phi+\hbar \partial_{\bar{i}}\right]=0, A_{n}$ are recursively determined by

$$
\left[A_{n}, \partial_{\bar{i}} \Phi\right]=\left[\partial_{\bar{i}}, A_{n-1}\right], \quad(n \geq 2)
$$

where $A_{1}=D^{\bar{l}}$.

- After some calculations, we found the following recursion relation

$$
a_{m}^{(n)}=a_{m-1}^{(n-1)}+(m-1) a_{m}^{(n-1)}
$$

and $a_{2}^{(n)}=a_{2}^{(n-1)}=\cdots=a_{2}^{(2)}=1$.

- To solve these equations, we introduce a generating function

$$
\alpha_{m}(t) \equiv \sum_{n=m}^{\infty} t^{n} a_{m}^{(n)}, \quad(m \geq 2)
$$

From the recursion relation, $\alpha_{m}(t)$ is determined as

$$
\alpha_{m}(t)=t^{m} \prod_{n=1}^{m-1} \frac{1}{1-n t}=\frac{\Gamma\left(1-m+\frac{1}{t}\right)}{\Gamma\left(1+\frac{1}{t}\right)}, \quad(m \geq 2)
$$

The coefficient $a_{m}^{(n)}$ is related to the Stirling number of the second kind $S(n, k)$,

$$
a_{m}^{(n)}=S(n-1, m-1)
$$

- Summarizing the above calculations, $L_{\bar{z}^{l}}$ becomes

$$
\begin{aligned}
L_{\bar{z}^{l}} & =\bar{z}^{l}+\hbar D^{\bar{l}}+\sum_{n=2}^{\infty} \hbar^{n} \sum_{m=2}^{n} a_{m}^{(n)} \partial_{\bar{j}_{1}} \Phi \cdots \partial_{\bar{j}_{m-1}} \Phi D^{\bar{j}_{1}} \cdots D^{\bar{j}_{m-1}} D^{\bar{l}} \\
& =\bar{z}^{l}+\sum_{m=1}^{\infty} \alpha_{m}(\hbar) \partial_{\bar{j}_{1}} \Phi \cdots \partial_{\bar{j}_{m-1}} \Phi D^{\bar{j}_{1}} \cdots D^{\bar{j}_{m-1}} D^{\bar{l}} .
\end{aligned}
$$

Similarly, the operator $R_{z^{i}}$ corresponding to the right * multiplication of z^{i} is obtained.

- Star products among z^{i} and \bar{z}^{i},

$$
\begin{aligned}
z^{i} * z^{j}= & z^{i} z^{j}, \quad z^{i} * \bar{z}^{j}=z^{i} \bar{z}^{j}, \quad \bar{z}^{i} * \bar{z}^{j}=\bar{z}^{i} \bar{z}^{j} \\
\bar{z}^{i} * z^{j}= & \bar{z}^{i} z^{j}+\hbar \delta_{i j}\left(1+|z|^{2}\right)_{2} F_{1}\left(1,1 ; 1-1 / \hbar ;-|z|^{2}\right) \\
& +\frac{\hbar}{1-\hbar} \bar{z}^{i} z^{j}\left(1+|z|^{2}\right)_{2} F_{1}\left(1,2 ; 2-1 / \hbar ;-|z|^{2}\right)
\end{aligned}
$$

- L_{f} for an arbitrary function f

$$
L_{f}=\sum_{\alpha} \frac{1}{\alpha}\left(\frac{\partial}{\partial \bar{z}}\right)^{\alpha} f\left(L_{\bar{z}}-\bar{z}\right)^{\alpha}
$$

We can derive an explicit formula for L_{f},

$$
L_{f}=\sum_{n=0}^{\infty} \frac{\alpha_{n}(\hbar)}{n!} g_{j_{1} \bar{k}_{1}} \cdots g_{j_{n} \bar{k}_{n}}\left(D^{j_{1}} \cdots D^{j_{n}} f\right) D^{\bar{k}_{1}} \cdots D^{\bar{k}_{n}}
$$

It is shown that L_{f} satisfies $\left[L_{f}, \partial_{\bar{i}} \Phi+\hbar \partial_{\bar{i}}\right]=0$.
This star product on $\mathbb{C} P^{N}$ is characterized by a single function of $\hbar, \alpha_{n}(\hbar)$.

- Leibniz rule for differentials In general,

$$
\partial(f * g) \neq(\partial f) * g+f *(\partial g)
$$

The Killing vectors corresponding to the $S U(N+1)$ isometry of $\mathbb{C} P^{N}$
$\mathcal{L}_{a}=\xi_{a}^{i} \partial_{i}+\xi_{a}^{\bar{i}} \partial_{\bar{i}}, \quad\left(a=1,2, \cdots,(n+1)^{2}-1\right)$,
$\left[\mathcal{L}_{a}, \mathcal{L}_{b}\right]=i f_{a b c} \mathcal{L}_{c}, \quad\left(f_{a b c}:\right.$ structure constant of $\left.S U(N+1)\right)$

The Leibniz rule holds with respective to the Killing vectors,

$$
\mathcal{L}_{a}(f * g)=\left(\mathcal{L}_{a} f\right) * g+f *\left(\mathcal{L}_{a} g\right)
$$

This property is important to construct actions of field theories on the N.C. $\mathbb{C} P^{N}$ which is invariant under the isometry.

Comparison with other N.C. deformations for $\mathbb{C} P^{N}$

1. Bordemann, Brischle, Emmrich and Waldmann gave a star product on $\mathbb{C} P^{N}$ by performing the phase space reduction from $\mathbb{C}^{N+1} \backslash\{0\}$.

$$
\begin{aligned}
f *_{B} g=f g+ & \sum_{m=1}^{\infty} \hbar^{m} \sum_{s=1}^{m} \sum_{k=1}^{s} \frac{k^{m-1}(-1)^{m-k}}{s!(s-k)!(k-1)!}\left(|\zeta|^{2}\right)^{s} \\
& \times \frac{\partial^{s} f}{\partial \bar{\zeta}^{A_{1}} \cdots \bar{\zeta}^{A_{s}}} \frac{\partial^{s} g}{\partial \zeta^{A_{1}} \cdots \zeta^{A_{s}}},
\end{aligned}
$$

where $\zeta^{A_{i}}, \bar{\zeta}^{A_{j}}$ are the homogeneous coordinates of $\mathbb{C} P^{N}$.
We showed that this star product $*_{B}$ coincides with the one we obtained,

$$
f *_{B} g=f * g .
$$

2. Balachandran, Dolan, Lee, Martin and O'Connor derived an star product on a fuzzy $\mathbb{C} P^{N}$ by using matrix representations of $S U(N+1)$.

Their star product also coincides with the one we derived, if one considers the specific case

- $\hbar=1 / L(L \in \mathbb{N}$: matrix size $)$
- star product in a function space spanned by

$$
\frac{z^{i_{1}} \cdots z^{i_{m}} \bar{z}^{j_{1}} \cdots \bar{z}^{j_{n}}}{\left(1+|z|^{2}\right)^{L}}, \quad(m, n \leq L)
$$

Note: L_{f} can be rewritten by the use of the covariant derivatives on $\mathbb{C} P^{N}$
as

$$
L_{f}=\sum_{n=0}^{\infty} \frac{\alpha_{n}(\hbar)}{n!} g^{\bar{j}_{1} k_{1}} \cdots g^{\bar{j}_{n} k_{n}}\left(\nabla_{\bar{j}_{1}} \cdots \nabla_{\bar{j}_{n}} f\right) \nabla_{k_{1}} \cdots \nabla_{k_{n}} .
$$

As far as we know, the origin of this coincidence of the star products obtained by these different methods is not apparent at this time.

4. Fock representation

$\left\{z^{i}, \partial_{j} \Phi \mid i, j=1,2, \cdots, N\right\}$ and $\left\{\bar{z}^{i}, \partial_{j} \Phi \mid i, j=1,2, \cdots, N\right\}$ constitute $2 N$ sets of the creation-annihilation operators under the star product,

$$
\begin{array}{lll}
{\left[\partial_{i} \Phi, z^{j}\right]_{*}=\hbar \delta_{i j},} & {\left[z^{i}, z^{j}\right]_{*}=0,} & {\left[\partial_{i} \Phi, \partial_{j} \Phi\right]_{*}=0,} \\
{\left[\bar{z}^{i}, \partial_{j} \Phi\right]_{*}=\hbar \delta_{i j},} & {\left[\bar{z}^{i}, \bar{z}^{j}\right]_{*}=0,} & {\left[\partial_{\bar{i}} \Phi, \partial_{\bar{j}} \Phi\right]_{*}=0 .}
\end{array}
$$

Annihilation operators: $\partial_{i} \Phi, \bar{z}^{j}$ Creation operators: $\quad z^{i}, \partial_{j} \Phi$

- $e^{-\Phi / \hbar}=\left(1+|z|^{2}\right)^{-1 / \hbar}$ is the vacuum projection:

$$
\begin{aligned}
& \partial_{i} \Phi * e^{-\Phi / \hbar}=\bar{z}^{j} * e^{-\Phi / \hbar}=0, \quad e^{-\Phi / \hbar} * z^{i}=e^{-\Phi / \hbar} * \partial_{j}^{-} \Phi=0 \\
& e^{-\Phi / \hbar} * e^{-\Phi / \hbar}=e^{-\Phi / \hbar}
\end{aligned}
$$

- A class of functions is constructed by acting the creationannihilation operators on the vacuum projection:

$$
\begin{aligned}
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} & :=c_{m n} z^{i_{1}} * \cdots * z^{i_{m}} * e^{-\Phi / \hbar} * \bar{z}^{j_{1}} * \cdots * \bar{z}^{j_{n}} \\
& =c_{m n} z^{i_{1}} \cdots z^{i_{m}} \bar{z}^{j_{1}} \cdots \bar{z}^{j_{n}} /\left(1+|z|^{2}\right)^{1 / \hbar}
\end{aligned}
$$

where we choose $c_{m n}=1 / \sqrt{m!n!\alpha_{m}(\hbar) \alpha_{n}(\hbar)}$.

- These functions form a closed algebra:

$$
\begin{gathered}
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * M_{k_{1} \cdots k_{r} ; l_{1} \cdots l_{s}}=\delta_{n r} \delta_{j_{1} \cdots j_{n}}^{k_{1} \cdots k_{n}} M_{i_{1} \cdots i_{m} ; l_{1} \cdots l_{s}} \\
\delta_{j_{1} \cdots j_{n}}^{k_{1} \cdots k_{n}}=\frac{1}{n!}\left[\delta_{j_{1}}^{k_{1}} \cdots \delta_{j_{n}}^{k_{n}}+\text { permutations of }\left(j_{1}, \cdots, j_{n}\right)\right]
\end{gathered}
$$

- Projection operators

$$
\begin{aligned}
& P_{i_{1} \cdots i_{n}}=M_{i_{1} \cdots i_{n} ; i_{1} \cdots i_{n}} \\
& P_{i_{1} \cdots i_{m}} * P_{j_{1} \cdots j_{n}}=\delta_{m n} \delta_{j_{1} \cdots j_{n}}^{i_{1} \cdots i_{n}} P_{i_{1} \cdots i_{n}}
\end{aligned}
$$

$$
\begin{aligned}
z^{k} * M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} & =\sqrt{\frac{m+1}{-m+1 / \hbar}} M_{k i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}}, \\
\partial_{\bar{k}} \Phi * M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} & =\hbar \sqrt{(m+1)(-m+1 / \hbar)} M_{k i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}}, \\
\partial_{k} \Phi * M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} & =\hbar \sqrt{\frac{-m+1+1 / \hbar}{m}} \sum_{l=1}^{m} \delta_{k i_{l}} M_{i_{1} \cdots \hat{i}_{l} \cdots i_{m} ; j_{1} \cdots j_{n}} \\
\bar{z}^{k} * M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} & =\frac{1}{\sqrt{m(-m+1+1 / \hbar)}} \sum_{l=1}^{m} \delta_{k i_{l}} M_{i_{1} \cdots \hat{i}_{l} \cdots i_{m} ; j_{1} \cdots j_{n}}, \\
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * z^{k} & =\frac{1}{\sqrt{n(-n+1+1 / \hbar)}} \sum_{l=1}^{n} \delta_{k j_{l}} M_{i_{1} \cdots i_{m} ; j_{1} \cdots \hat{l}_{l} \cdots j_{n}} \\
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * \partial_{\bar{k}} \Phi & =\hbar \sqrt{\frac{-n+1+1 / \hbar}{n} \delta_{k j_{l}} M_{i_{1} \cdots i_{m} ; j_{1} \cdots \hat{j}_{l} \cdots j_{n}}} \\
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * \partial_{k} \Phi & =\hbar \sqrt{(n+1)(-n+1 / \hbar)} M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n} k}, \\
M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * \bar{z}^{k} & =\sqrt{\frac{n+1}{-n+1 / \hbar}} M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n} k} .
\end{aligned}
$$

5. Explicit formulas for a star product on $\mathbb{C} H^{N}$

- Similarly, explicit expressions of star products on complex hyperbolic spaces $\mathbb{C} H^{N}$ are derived by using the deformation quantization with separation of variables.
$\mathbb{C} H^{N}$: noncompact Kähler manifold

$$
\text { Kähler potential: } \quad \Phi=-\log \left(1-|z|^{2}\right)
$$

$$
\text { metric: } \quad d s^{2}=2 \frac{\left(1-|z|^{2}\right) \delta_{i j}+\bar{z}^{i} z^{j}}{\left(1-|z|^{2}\right)^{2}} d z^{i} d z^{\bar{j}}
$$

- star product:
$f * g=\sum_{n=0}^{\infty} \frac{\beta_{n}(\hbar)}{n!} g_{j_{1} \bar{k}_{1}} \cdots g_{j_{n} \bar{k}_{n}}\left(D^{j_{1}} \cdots D^{j_{n}} f\right)\left(D^{\bar{k}_{1}} \cdots D^{\bar{k}_{n}} g\right)$,
where $\beta_{n}(\hbar)=-\alpha_{n}(-\hbar)=\frac{(-1)^{n-1} \Gamma(1 / \hbar)}{\Gamma(n+1 / \hbar)}$.
- Fock representation:

The following functions form a closed algebra:

$$
\begin{aligned}
& N_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}}=c_{m n}^{\prime} z^{i_{1}} \cdots z^{i_{m}} \bar{z}^{j_{1}} \cdots \bar{z}^{j_{n}}\left(1-|z|^{2}\right)^{1 / \hbar}, \\
& N_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * N_{k_{1} \cdots k_{r} ; l_{1} \cdots l_{s}}=\delta_{n r} \delta_{j_{1} \cdots j_{n}}^{k_{1} \cdots k_{n}} N_{i_{1} \cdots i_{m} ; l_{1} \cdots l_{s}} .
\end{aligned}
$$

6. Summary and discussion

- We obtained explicit expressions of star products on $\mathbb{C} P^{N}$ by using the deformation quantization with separation of variables.

$$
f * g=\sum_{n=0}^{\infty} \frac{\alpha_{n}(\hbar)}{n!} g_{j_{1} \bar{k}_{1}} \cdots g_{j_{n} \bar{k}_{n}}\left(D^{j_{1}} \cdots D^{j_{n}} f\right) D^{\bar{k}_{1}} \cdots D^{\bar{k}_{n}} g .
$$

- Fock representation

The following functions form a closed algebra under the star product,

$$
\begin{aligned}
& M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{m}} \sim \frac{z^{i_{1} \cdots z^{i_{m}} \bar{z}^{j_{1}} \cdots \bar{z}^{j_{n}}}}{\left(1+|z|^{2}\right)^{1 / \hbar}} \\
& M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} * M_{k_{1} \cdots k_{r} ; l_{1} \cdots l_{s}}=\delta_{n r} \delta_{j_{1} \cdots j_{n}}^{k_{1} \cdots k_{n}} M_{i_{1} \cdots i_{m} ; l_{1} \cdots l_{s}} .
\end{aligned}
$$

- Similarly, explicit expressions of star products on $\mathbb{C} H^{N}$ are derived by using the deformation quantization with separation of variables.
Δ Star products on other Kähler manifolds
Ex. a locally symmetric Kähler manifold: $\nabla_{\mu} R_{\nu \rho \sigma}{ }^{\lambda}=0$
Assumption:

$$
L_{f} g=\sum_{n=0}^{\infty} T_{n}^{\bar{j}_{1} \cdots \bar{j}_{n}, k_{1} \cdots k_{n}}\left(\nabla_{\bar{j}_{1}} \cdots \nabla_{\bar{j}_{n}} f\right)\left(\nabla_{k_{1}} \cdots \nabla_{k_{n}} g\right), \quad(\nabla T=0)
$$

Condition: $\left[L_{f}, \partial_{\bar{i}} \Phi+\hbar \partial_{\bar{i}}\right]=0$

$$
\begin{aligned}
& {\left[n T_{n}^{\bar{j}_{1} \cdots \bar{j}_{n}, k_{1} \cdots k_{n}} g_{k_{n} \bar{i}}-\hbar T_{n-1}^{\bar{j}_{1} \cdots \bar{j}_{n-1}, k_{1} \cdots k_{n-1}} \delta_{\bar{i}}^{\bar{j}_{n}}\right.} \\
& \quad \begin{array}{l}
\left.-\hbar \frac{n(n-1)}{2} T_{n}^{\bar{j}_{1} \cdots \bar{j}_{n}, k_{1} \cdots k_{n-2} p q} R_{\bar{i} p q}^{k_{n-1}}\right] \\
\\
\quad \times\left(\nabla_{\bar{j}_{1}} \cdots \nabla_{\bar{j}_{n}} f\right)\left(\nabla_{k_{1}} \cdots \nabla_{k_{n-1}} g\right)=0
\end{array}
\end{aligned}
$$

\triangleright Construction of field theories on N.C. $\mathbb{C} P^{N}$ (or $\mathbb{C} H^{N}$)
Ex. scalar field:

$$
\phi=\sum \phi_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}} M_{i_{1} \cdots i_{m} ; j_{1} \cdots j_{n}}
$$

Lagrangian density: $\frac{1}{2} \mathcal{L}_{a} \phi \mathcal{L}_{a} \phi+V[\phi]$
N.C. soliton in the large noncommutativity limit? projection operators: $\quad P_{i_{1} \cdots i_{n}}=M_{i_{1} \cdots i_{n} ; i_{1} \cdots i_{n}}$

