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1 Introduction

<> Solvable matrix models for 2D quantum gravity or noncritical string theories
were vigorously investigated around 1990.

e as toy models for critical string theories, in particular focused on
nonperturbative aspects.

e But, little has been known about (solvable) matrix models corresponding to
noncritical superstrings with target-space SUSY.
We would like to consider such matrix models.

e \We hope our analysis helpful to analyze Yang-Mills type matrix models for
critical strings.



<> We previously considered a simple SUSY matrix model:  [Kuroki-F.S. 2009]

1 ' B
Svv = Ntr|oB® +iB(¢° — 1*) + (o9 + o),
where
B, ¢ : Bosonic N |
7 N X N h .
Y, 1) : Fermionic X ermitian matrices
e SUSY

Q¢ — ¢9_ Q¢ _: 0, Q@E = —1B, QB = 0,
Q¢ — _'Qb’ Q"p = 0, Q"p — _ti QB = 0.
= Q?=Q*>=0 (nilpotent)

e B, 1, 1 integrated out

1
Sy — INtr 2(¢2 — ,LL2)2 — Indet(¢ @ Iy + In Q @)
/l\

Double-well scalar potential
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¢ Large-IN saddle point equation for p(x) = ~trd(x — ¢):

1 1
[dyp(y) P—— + [dy p(y) P—— = o’ — p’x
T —Yy T+ Yy

SUSY preserving large-IN solution with filling fraction (v, v_):
(vy +v_=1) [Kuroki-F.S. 2009]

L [te@—aE - a<w<b
PO el @ - a2 —a) (b<w<—a)

with a = /u? — 2, b = /u? + 2.

e Exists for u? > 2.
(SUSY breaking one-cut solution for p? < 2.  [Kuroki-F.S. 2010])

e a and b are independent of v4! <= Characteristic of SUSY model
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Figure 1: Double-well scalar potential (upper panel) and the eigenvalue distribution for v, > v_ (lower panel).



Large-IN saddle point equation:
1 1
[dyp(y) P+ [dyp(y) P = o’ — p’x
r—1vy r—+vy

T

Effect from fermions

e LHS
= An eigenvalue at * € [—b, —a| U [a, b] feels repulsive force from the
other eigenvalues as well as from their mirror images.

—=> The force independent of 4!
(Characteristic of SUSY, No analog in bosonic double-well matrix models)



° (Iarge—N free energy) = 0, <]btr B"> =0 (n =1,2,-- )
strongly suggest that SUSY is preserved.

Note that tr B® = Q tr (iypB" ') = Q tr(iyp B™1).

=> The SUSY minima are infinitely degenerate, parametrized by (v, v_).



<> In this talk,

e we compute correlation functions of this matrix model (in sections 2-5).
(— Logarithmic critical behavior)

e \We discuss correspondence between the matrix model and 2D type |IA
superstring theory on an nontrivial RR background (in sections 6 & 7).

<> The logarithmic critical behavior is somewhat reminiscent of
the ¢ = 1 matrix model (matrix quantum mechanics) [Kazakov-Migdal 1988]
or the Penner model (zero-dimensional matrix model). [Distler-Vafa 1991]

ZpPenner = /szM exp[INttr{M + In(1 — M)}]

=> QOur matrix model ~ a SUSY version of the Penner model
~ 2D superstring with target-space SUSY.



Note:

e This matrix model is equivalent to the O(n = —2) model on a random
surface [Kostov 1989]:

Zow = | dV e "V det(¢ @ Ly + Ly ® ¢) /2
with V() = 1(¢% — pu2)2

e lts critical behavior is described by ¢ = —2 topological gravity (i.e.
Gaussian one-matrix model). |[Kostov-Staudacher 1992]

e It is easily seen by the Nicolai mapping H = ¢?2.
[Gaiotto-Rastelli-Takayanagi 2004]
Partition function in the (v, v_) sector becomes

Zlg/lfl—{_/l,u_) — (_1)1/_N/dN2H eNtr%(H—u2)2.

But, the H-integration is over positive definite hermitian matrices.

For tr ™ or tr B™, this approach is applicable at least in ]i,—expansion.
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However, tr ¢2" 11, tr 2"t trp2™t1, ... are not observables in the

topological gravity.
1, .
o tr *" 1 = tr H™"2 is singular at the origin.

e Note that tr ¢*" = tr?" = 0.

Actually, we see nontrivial logarithmic critical behavior for these operators.
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Curious observation:

> Suppose that 1/ and 1) correspond to target-space fermions in the
corresponding superstring theory.

1 < (NS,R) sector, 1 <> (RNS) sector.
Then,

(_1)FL : ¢ — "pa 1; — —
(_1)FR . ¢ — _7707 /QE

@l

In order for the matrix model action to be invariant under (—1)¥z and (—1)"%,

(—1)FL : B — B, ¢ — — o,
(-1)'®: B — B, b — —o.

Recall Sy = N tr [5B? + iB(¢? — p?) + ¢{o, ¥ }].

This means
B < (NS,NS) sector, ¢ < (R,R) sector.
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2 Planar one-point functions

<]if tr (b"’> = [dxx"p(x)

0

n
= e+ (1)) @+ W)V F (-
e reduces to a polynomial of u? for 1 even:
1 1
2\ __ .2 4\ _ 4
<Ntr¢>0_ﬂa <Ntr¢>0_1+“’9
(c = —2 topological gravity)

e exhibits logarithmic singular behavior as u? — 2 for n odd:
w= (1 —2)

1
<tr ¢2k+1> = (vy —v_) l(const.) W% In w + (less singluar)] :
N 0
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Explicit form for a first few expectation values:

<1tr q5> = (vy —v_) 04 + 16w -+ w2 Inw + (’)(w2)}
N 0 157w 3w
<;tr d)3>0 = (vy —v_) ;8:;47 + 15271_8w + tfw + ﬂ_wg Inw + (’)(w?’)]
<1tr F) = (s — o) 8192 | 2048 128 , 160
N 0 3157 217 T 37
10

+—wilnw + (’)(w4) .
T

F (—" ;’, 3; 1) = Foon + Funiv for n odd.
e N

Nonuniversal part Universal part
(“lattice artifact”) (relevant to “continuum physics")
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3 Planar two-point functions (Bosons)

It turns out that they take a quadratic form of F'.

e "“Even-even’ correlators:

1 1
" tr d**F _tr p*¢ = (polynomial of w indep. of (v, — v_
<N @ N ¢>C,O (poly p. of (14 ))
(c = —2 topological gravity)

e "Even-odd”’ correlators:

1
<<I>2k+1 —tr ¢2£> = (vy — v_)(const.) W Inw
N C,0

9

+ (less singular)

e “Odd-odd"” correlators:

(Pakt1 Poet1)co = (V4 — v_)?(const.) " (Inw)?

+ (less singular),
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where in order to subtract nonuniversal contribution we took a basis of the
“odd” operators (operator mixing):

1 k 1 .
2k+1 = 7 r ¢ + (vy —v_) '21 Q2 11,2 (w)N r¢

7

Finiv F<.’.’.;1iw> —Fhon

with oag41,2i(w) being a regular function at w = 0.

e From the previous observation (¢ < (R, R) sector),
(v — v_) < RR charge

e ®,5.1 has RR charge.
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4 Planar three-point functions (Bosons)

Cubic form of F'.
We obtain

(P1P1P1)c =

(P1P1P3)cp =

(vy —vo)’

(vy —v-)?

1673

(Inw)® 4+ O((In w)2)] .

73

2 3 3 9
+ - w(lnw)” 4+ O(w(ln w) )] :
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4 Planar three-point functions (Bosons)

Cubic form of F'.
We obtain

(P1P1P1)cp =

(P121P3)c =

(vy —v-)?

(vy —vo)’

e The results so far suggest

1673

73

(Inw)® 4+ O((In w)2)] .

2 3 3 0
+ - w(lnw)” 4+ O(w(ln w) )] :

(Pakyt1 e Pakyt1) oo = (V4 — v-)"(const.) w2 D (In w)”

+ (less singular)

with v = —1.

<— string susceptibility of ¢ = —2 topological gravity

Gravitational scaling dimension of @911 is k, besides the logarithmic

factors (In w)™.
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5 Planar two-point functions (Fermions)

For fermions, we obtain

<\I!2k+1\i'25+1>c,0 = O, (const.) (v — 1/_)2’”14*;2"“le In w

+ (less singular)

with

1
Woriq Ntr P 4 (mixing),

_ 1 _
Wor i Ntr 2R (mixing).

= Wog11 and \Tlgk_H have the dimension k same as @y 1, besides the
logarithmic factor.
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6 2D type lIA superstring [Kutasov-Seiberg 1990, Ita-Nieder-Oz 2005]

o (Target space) = (x, ),
where € S with self-dual radius (R = 1) and ¢: Liouville.
(" Same as the Penner modell!)

e Holomorphic EM tensor (except ghost part) on string world-sheet:

— _Yow2 1 Loz @
Ty = —,(02)" — tpudipe — (99)* +

with Q = 2.

2, 1
O — iy

e Target-space SUSY is nilpotent.
lo—H—iz(2 dz
Q—I—(z) — 6_2¢ 21 ( )9 Q—I— — 7{7.Q—I—(Z)9
2d7r_z
NIl W = z _ =
g(5) = e ¥z g =% g (z),
271
where vy + b, = /2eTH.

= Q7 = Q? = 0. (< Same as the matrix model!)
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e Vertex operators (holomorphic sector):

NS sector (—1)-picture : Tj(2) = e PTheTPee ()
R sector (—3)-picture : Vi, (2) = e_%¢+§€H+ikw+p”(z)

with € = +1.

Locality with supercurrents, mutual locality, superconformal inv., level
matching

=> physical vertex operators

pe =1 — |k| (4 conformal inv. & Seiberg’s locality bound)
k = €|k| (4 Dirac equation constraint)
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Note
The branch of py = 1 + |k| does not satisfy Seiberg's locality bound (pe < 1).

=> Insertion of such “nonlocal” vertex operators cannot be regarded as a local
disturbance on string world-sheet.

Corresponding wave function (disk with the vertex op. inserted) peaks at ¢

large:

_Q _
W ~ — (Vertex op.) ~ e~ 2% ePt? = ePr=1)¢,

gst

2
Dynamical metric on string world-sheet : gup = Gap €27

® o ~ +00 : large geometry (nonlocal, macroscopic)

e o ~ —oo : small geometry (local, microscopic)
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Winding background:

(NS, NS) :

(R+, R—) :

(R—, R+) :

(NS, R—) :

(R+, NS) :

Tk(z) T_k(Z)

Vi, 11(2) Vi, —1(2)

V_i,~1(2) Vi, +1(2)

T_k(z) V_k, _1(2)

Vi, +1(2) Ti(2)

22

[Ita-Nieder-Oz 2005]
1
(k€ Z+ 2) “tachyon”
winding

(k =

l\D\oo

1
2’
(k=0,1,2,--")

RR 2-form field strength

winding
1 3
(k = 2 3 ) fermion(—)
momentum
(k== 2y)  fermion(+)
= 0 o ermion

momentum



Interesting observation:

Let us assume the correspondence of supercharges between the matrix model
and the type IlA theory:

(Qa Q) <~ (Q—I—a Q—)

= SUSY transformation properties & the observation before lead to

1 _
P, = Ntrqb & [d*z Vi 1(z) Ve (%) (Rt R-),
1 | _
U, = Ntr?,b & [dPz T_%(z) V_%’_l(i) (NS, R—),
_ 1 _ . _
v, = Ntr?,b & [d*z V%,H(z) T%(E) (R+, NS),
1 | _
Ntr(—iB) & [d*z T_%(z) T%(E) (NS, NS).

Quartet w.rt. (Q,Q) < Quartet wrt. (Qi, Q_)
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Furthermore, it is natural to extend it to higher k(= 1,2,:-:) as

Por+1 = ]irtr ¢*F 1 4 (mixing) < [d?z sz+§,+1(z) V—k—é,ﬂ(z)’

Wokt+1 = ]iftr P 4 (mixing) & [ d?z T—k—é(z) V—k—%a—l(z)’

Wopt1 = ]irtr P 4 (mixing) < [ d*z Vk:+§,+1(z) Tk+§(2)’
;tr(—iB)kH + (mixing) < [d*zT_;_1(2) T),1(2).

(Single trace operators in the matrix model) <> (Integrated vertex operators in |l1A)

(Powers of matrices) <> (Windings or Momenta)

24



Note:

e RR 2-form field strength in (R—, R+) is a singlet under the target-space
SUSYs Q_, Q_, and appears to have no matrix-model counterpart.

e Expectation values of operators with nonzero Ramond charge (e.g.
(P2r+1)g) are nonvanishing in the matrix model.

= The matrix model is considered to correspond to |IA on a background of the
RR 2-form.

Let us check the correspondence by computing amplitudes in |IA theory.
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7 Correspondence between the matrix model and the IIA theory

> Correlation functions among integrated vertex operators in IIA on the trivial
background:

1
ny;) = D(x H. chosts) e °CFT g~ Sint V;
() Vol (ckv) | D (> #» H. ghosts) Vi,

1 _ _ . _
Scrr = o / d’z |0x0x + Opdp + ff@Rgo + OHOH + (ghosts)]|,
T

Sint = w/d2z Tﬁol) (z)Tl(O)(Z) (<— O-picture (NS, NS) “tachyon™)
2 2
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7 Correspondence between the matrix model and the IIA theory

> Correlation functions among integrated vertex operators in IIA on the trivial
background:

1
N S Sin ,
< Iil Vz> = Vol.(CKV) | D(x, p, H, ghosts) e 7CFTe™ int Iil Vi,

1, _ _ Q . _
Scrr = o [d?z |0xdx + Bpdp + 4@1-24;: + OHOH + (ghosts)| ,
T

Sint = w/dzz Tﬁol) (z)Tl(O)(Z) (<— O-picture (NS, NS) “tachyon™)
2 2

<> Correlation functions in IlA on (R—, R+4) background:

(i) = (v eim),
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where WRR is invariant under the target-space SUSYs:

Wrr = (vy —v_) kZZ ay, wF YRR, (ay : numerical consts.)
c
jd?z %,_1(2)‘7_]{;’4_1(2) (pe =1 — |k|, k = 0o,—1,—2,-- .)
)
2 (nonlocal) —-(nonlocal) , _
rd Zv—kz,—l (z)‘/k,—l—l (z) (pﬁ: 1L+ |kl, k= 1v29"')°
Note

e We treat the RR background for (. — v_) small as exponentiated vertex
operators:

(nvi)=((nwe)e¥u) = £ 2 ((1ws) (Wan)").

e Liouville-like interaction

Sint = w [ d?2 Tﬁ?(z)Tg‘”(z) & N(p?—2)tr(—iB) € Sum
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<> Standard Liouville theory computation for amplitudes leads to:

1 , 1
® <tI‘(-’LB) (I)2k+1> = —*8w <(I)2k_|_1>0 ~/ (I/_|_ — I/_) wkH Inw &
N 0 4

1 041 = = RR
_4(1/+ — u_)egz apw'" <(/ T_;T;) (/ Vk+;,+1v—k—5,—1) Ve >
1

o <(I)2k1—|—1(1)2k2+1>c,0 ~ (vy — V—)2 wk1+k2+1(1nw)2 <~

2 01 +£2+2
(v — V) ¥ apapwtTT
2 1,657

X <</ Vk1+;,+1‘7_k1—;,—1) (/ Vk2+%v+1v_k2_%’_1) VER ng>

ki 4 ko)
( ;‘:‘k '2) ) wk1—|—k2—|—1(lnw)2’
1.2,

= (vy —v_)? 27 Qpyqky Q1 (

with appropriate regularization by the Liouville volume V;, = —2 In w.
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e Computation in the type IlA side reproduces the (1 — v_)-dependence
and the w-dependence in the matrix model result!

e Higher powers of In w comes from resonances to the (R—,R+) background.
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8 Summary and discussions

<> We computed correlation functions in the double-well SUSY matrix model,
and discussed its correspondence to 2D type ||IA superstring theory on
(R—,R+) background by computing amplitudes in both sides.

This is an interesting example of matrix models for superstrings with
target-space SUSY, in which various amplitudes are explicitly calculable.

> Matrix-model counterpart of positive-winding “tachyons” Tk_%T_

(k=1,2,-.-)?

Similar to the Kontsevich-Penner model (introducing an external matrix source)?
[Imbimbo-Mukhi 1995]

k+3

<> Higher genus amplitudes?

> D-brane interpretation of the matrix model?
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> Case of (v1 — v_) not small?
Related to black-hole (cigar) target space? cf. [Hori-Kapustin 2001]

Thank you very much for your attention!
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A The Penner model [Distler-Vafa 1991]

e Partition function

Z = Np /szM exp[Nttr{M + In(1 — M) }]

oo 1
= Np /dNZM exp |—Nttr k; ~ M*|,

=2 k
where A]f-ID — 1dN° M exp [—Nt tr ;Mz]

e Free energy

InZ = > N>%F,
g=0

B,

F = $2729 ((1 4+ ¢)2729 1 f > 2
' ag2g-2)" (Y bt

=> Double scaling limit: N — oo, t — —1 with N (1 +t) = —v fixed.
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After putting v = —1u, the free energy of c = 1, R = 1 string is

obtained.
|B2g|

97 2g(2g9 — 2)

pi* (g > 2)

| Bag| = (—1)97" By
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B The Kontsevich-Penner model (W, matrix model)

Extension of the Penner model to include source terms for “tachyon” operators
in 2D string (with v — —v). [Imbimbo-Mukhi 1995]

e Partition function (solution of the W, constraint):

Z(t, %) = (det A)” [ dN M exp

tr{—VMA—I— (v —N)InM

k=1

= /dN2M exp

tr{—uM + (v —N)InM — I/kof fk,(MA_l)k} :
=1

e 1. is a source for “tachyons” of negative momentum —k (~ tr M¥).

o A: external N X IN matrix
Source for positive-momentum “tachyons” % is given by the
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Kontsevich-Miwa transformation of A:

1 —k
vk

=> Asymmetric treatment for positive/negative-momentum “tachyons”

e “Tachyon” amplitude

0 o o 0
T Ti T goeee T, V= uu e InZ(t, 1
Ty Fn 1=l b ot,,  Oty, 0%, Ot n Z( 12520
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