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Introduction

We will follow the approach in which spinors are constructed in terms

of nilpotents formed from the spacetime basis vectors represented

as generators of the Clifford algebra                .

The inner, symmetric, product of basis vectors

gives the metric,         .
1

2

1

2

· ( )

( )

b a b b a ab

b a b b

a

aa

γ γ γ γ γ η

γ γ γγ γ γ

γ ≡ + =

∧ ≡ −

abη

The outer, antisymmetric, product of basis vectors

gives the basis bivector.

aγ
(1,3)Cl

Generic Clifford number

A

Aφ γΦ = where
1 2 1 2... ...

r ra a a a a aA γ γγ γ γ≡ ≡ ∧ ∧ ∧ 0,1,2,3,4r =

Spinors are particular Clifford numbers

α
αψ ξΨ = where         are spinor basis elements, composed from        .αξ Aγ

We will consider transformation properties of Clifford numbers.



In general, a Clifford number transforms according to

R S′Φ → Φ = Φ

Clifford numbers

In particular, if             ,   we have

R′Φ → Φ = Φ

S 1=

As an example, let us consider the case

1 1

2 2e.g.,   R e , S e
A A
A Aβα γ γ

= =

1 1
1 2 1 22 2

1 2 1 2R e cos sin ,   S e cos sin
2 2 2 2

αγ γ βγ γα α β β
γ γ γ γ= = + = = +

and examine, how various Clifford numbers,                   ,  transform under (1),

which now reads:

(1)

(i)   If  1 2

1 2X X Xγ γ= +

C

CX X γ=

1 2

1 2 1 2cos sin sin cos
2 2 2 2

X X X
α β α β α β α β

γ γ γ γ
− − − −   ′ = + + − +   

   

then

' R SX X X→ =



(ii) 3 123

3 123X X Xγ γ= +

3 123

3 123 2 123cos sin sin cos
2 2 2 2

X X X
α β α β α β α β

γ γ γ γ
+ + + +   ′ = + + − +   

   

(iii) 12

121X s X γ= +

2

12 121 cos sin 1 sin cos
2 2 2 2

X s X
α β α β α β α β

γ γ
+ + + +   ′ = + + − +   

   

(iv) 1 2

5 1 5 2X X Xγ γ γ γ= +ɶ ɶ

1 2

5 1 5 2 5 1 5 2cos sin sin cos
2 2 2 2

X X X
α β α β α β α β

γ γ γ γ γ γ γ γ
− − − −   ′ = + + − +   

   
ɶ ɶ

Usual rotations of vectors or pseudovectors are reproduced,

if the angle       for the right transformation is equal to minus angle          

for the left transformation, i.e., if 
β

β α= −

Then all other transformations which mix the grade vanish.

α



Witt basis

Clifford algebra and spinors in Minkowski space

The new basis vectors satisfy

1 0 3 2 1 2

1 0 3 2 1 2

1 1
( ) ,     ( ) ,

2 2

1 1
( ) ,     ( )

2 2

i

i

θ γ γ θ γ γ

θ γ γ θ γ γ− −

= + = +

= =

{ , } ,    { , } 0,    { , } 0a b ab a b a bθ θ η θ θ θ θ= = =

Fermionic anticommutation relations

We now observe that the product

1 2f θ θ=

satisfies

0, 1,2a f aθ = =

can be interpreted as `vacuum’,

and       can be interpreted as operators

that annihilate     .f
aθ

f

An object constructed as a superposition

0 1 2 12

1 2 1 2( 1 ) fψ ψ θ ψ θ ψ θ θΨ = + + +

is a 4-component spinor.

0 1 2 3( , , , )aγ γ γ γ γ=



It is convenient to change the notation:

1 2 3 4

1 21 2( 1 ) 1,2,3,4,f α
αψ ψ θ θ ψ θ ψ θ ξ αψΨ = + + + = =

Spinor basis
Even part

1 2

21 2 1( 1 )L ψ ψ θ θ θ θΨ = +

3 4

1 2 21( )R ψ θ ψ θ θ θΨ = +Odd part

5 L Liγ Ψ = −Ψ

5 R Riγ Ψ = Ψ
5 0 1 2 3γ γ γ γ γ=

Under the transformations

R ,′Ψ → Ψ = Ψ
1 2

1

2
R exp[ ]a aγ γ ϕ=

transforms as a Dirac spinor.Ψ



It is convenient to change the notation:

1 2 3 4

1 21 2( 1 ) 1,2,3,4,f α
αψ ψ θ θ ψ θ ψ θ ξ αψΨ = + + + = =

Spinor basis
Even part

1 2

21 2 1( 1 )L ψ ψ θ θ θ θΨ = +

3 4

1 2 21( )R ψ θ ψ θ θ θΨ = +Odd part

5 L Liγ Ψ = −Ψ

5 R Riγ Ψ = Ψ
5 0 1 2 3γ γ γ γ γ=

Under the transformations

R ,′Ψ → Ψ = Ψ
1 2

1

2
R exp[ ]a aγ γ ϕ=

transforms as a Dirac spinor.Ψ

Example: 1
1 22

1 2R e cos sin
2 2

γ γ ϕ ϕ ϕ
γ γ= = +

1 2 3 42 2 2 2
1 2 1 2R e 1 e e e

i i i i

f
ϕ ϕ ϕ ϕ

ψ ψ θ θ ψ θ ψ θ
− − 

′Ψ → Ψ = Ψ= + + + 
 

1 2f θ θ=

This is the well-known transformation of a 4-component spinor.



Four independent spinors

Four different possible vacua:

1 1 2 2 1 2 3 1 2 3 1 2, , ,f f f fθ θ θ θ θ θ θ θ= = = =

Four different kinds of spinors:

1 11 21 31 41

1 2 1 2 1

12 22 32 42

1 2 1 2 2

3 13 23 33 43

1 2 1 2 3

4 14 24 34 44

1 2 2

2

1 4

( 1 )

( 1 )

( 1 )

( 1 )

f

f

f

f

ψ ψ θ θ ψ θ ψ θ

ψ ψ θ θ ψ θ ψ θ

ψ θ ψ θ ψ ψ θ θ

ψ θ ψ θ ψ ψ θ θ

Ψ = + + +

Ψ = + + +

Ψ = + + +

Ψ = + + +

Each of those spinors lives

in a different minimal left ideal

of              .(1,3)Cl

In general, complexified

version

An arbitrary element of              is the sum:(1,3)Cl

1 2 3 4 i A

i A

α
αψ ξ ψ ξΦ = Ψ + Ψ + Ψ + Ψ = ≡

ɶ

ɶ

1 1 2 1 1 4 2 4 4 1 2 4{1 , ,..., , , 1 , },iA
f f f f f fαξ ξ θ θ θ θ θ θ≡ =ɶ

Spinor basis of

(1,3)Cl

(1,3)Cl

1,2,3,4; 1,2,3,4iα = =

`Generalized spinor’



Four independent spinors

Four different possible vacua:

1 1 2 2 1 2 3 1 2 3 1 2, , ,f f f fθ θ θ θ θ θ θ θ= = = =

Four different kinds of spinors:

1 11 21 31 41

1 2 1 2 1

12 22 32 42

1 2 1 2 2

3 13 23 33 43

1 2 1 2 3

4 14 24 34 44

1 2 2

2

1 4

( 1 )

( 1 )

( 1 )

( 1 )

f

f

f

f

ψ ψ θ θ ψ θ ψ θ

ψ ψ θ θ ψ θ ψ θ

ψ θ ψ θ ψ ψ θ θ

ψ θ ψ θ ψ ψ θ θ

Ψ = + + +

Ψ = + + +

Ψ = + + +

Ψ = + + +

Each of those spinors lives

in a different minimal left ideal

of              .(1,3)Cl

In general, complexified

version

An arbitrary element of              is the sum:(1,3)Cl

1 2 3 4 i A

i A

α
αψ ξ ψ ξΦ = Ψ + Ψ + Ψ + Ψ = ≡

ɶ

ɶ

1 1 2 1 1 4 2 4 4 1 2 4{1 , ,..., , , 1 , },iA
f f f f f fαξ ξ θ θ θ θ θ θ≡ =ɶ

Spinor basis of

(1,3)Cl

(1,3)Cl

Matrix notation:

11 12 13 14

1 2 1 3 1 4

21 22 23 24

1 2 1 1 2 2 2 3 2 4

31 32 33 34

1 1 1 2 3 4

41 42 43 44

2 1 2 2 1 2 3 1 2 4

,i

iA

f f f f

f f f f

f f f f

f f f f

α
α

θ θψ ψ ψ ψ
θ θ θ θ θ θψ ψ ψ ψ

ψ ξ ξ
θ θψ ψ ψ ψ
θ θ θ θ θ θψ ψ ψ ψ

  
  
  = ≡ =
  
  

   

ɶ

1,2,3,4; 1,2,3,4iα = =



Four independent spinors

Four different possible vacua:

1 1 2 2 1 2 3 1 2 3 1 2, , ,f f f fθ θ θ θ θ θ θ θ= = = =

Four different kinds of spinors:

1 11 21 31 41

1 2 1 2 1

12 22 32 42

1 2 1 2 2

3 13 23 33 43

1 2 1 2 3

4 14 24 34 44

1 2 2

2

1 4

( 1 )

( 1 )

( 1 )

( 1 )

f

f

f

f

ψ ψ θ θ ψ θ ψ θ

ψ ψ θ θ ψ θ ψ θ

ψ θ ψ θ ψ ψ θ θ

ψ θ ψ θ ψ ψ θ θ

Ψ = + + +

Ψ = + + +

Ψ = + + +

Ψ = + + +

Each of those spinors lives

in a different minimal left ideal

of              .(1,3)Cl

In general, complexified

version

An arbitrary element of              is the sum:(1,3)Cl

1 2 3 4 i A

i A

α
αψ ξ ψ ξΦ = Ψ + Ψ + Ψ + Ψ = ≡

ɶ

ɶ

1 1 2 1 1 4 2 4 4 1 2 4{1 , ,..., , , 1 , },iA
f f f f f fαξ ξ θ θ θ θ θ θ≡ =ɶ

Spinor basis of

(1,3)Cl

(1,3)Cl

Matrix notation:

11 12 13 14

1 2 1 3 1 4

21 22 23 24

1 2 1 1 2 2 2 3 2 4

31 32 33 34

1 1 1 2 3 4

41 42 43 44

2 1 2 2 1 2 3 1 2 4

,i

iA

f f f f

f f f f

f f f f

f f f f

α
α

θ θψ ψ ψ ψ
θ θ θ θ θ θψ ψ ψ ψ

ψ ξ ξ
θ θψ ψ ψ ψ
θ θ θ θ θ θψ ψ ψ ψ

  
  
  = ≡ =
  
  

   

ɶ

Spinor of the 2nd left ideal Basis of the 2nd left ideal

1,2,3,4; 1,2,3,4iα = =



R SA A A B B

AA B BA
Lψ ξ ψ ξ ψ ξ ψ ξ′ ′ ′Φ = → Φ = Φ = = =

ɶ ɶ

ɶɶ

A general transformation is

where
R S ,B B A B

BA A A A
L Lξ ξ ξ ψ ψ′ ′= = =

ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ

The transformation from the left,

R′Φ = Φ
reshuffles the components within each left ideal,

whereas the transformation from the right,

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

S′Φ = Φ
reshuffles the left ideals.

A iα≡ɶ

1,2,3,4

1,2,3,4i

α =

=

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

Four left ideals

Components within

a left ideal

Active transformation



Passive transformations

' 'A A

A A
ψ ξ ψ ξ′Φ = = = Φ

ɶ ɶ

ɶ ɶ

If the spinor basis transforms according to

R S B

BA A A
Lξ ξ ξ′ = =
ɶ

ɶ ɶ ɶ ɶ

then the components must transform as

1( )A B A

B
Lψ ψ −′ =

ɶ ɶɶ

ɶ

With respect to the new basis,       ,   (new reference frame),

the generalized spinor,     , has transformed components.Φ
A

ξ ′
ɶ

The object remains the same
(2)

(3)

(4)

From (2) – (4) we obtain

1 1 1( ) R SB A B B

B B BA
Lψ ξ ψ ξ ψ ξ− − −′ ′= =

ɶɶ ɶ ɶ

ɶ ɶ ɶ ɶ

This is the active transformation of the object              :'B

B
ψ ξɶ ɶ

1 1R S' 'B

B

B

B

B

B
ψ ψ ξ ψξ ξ− −→ =

ɶ ɶ

ɶ ɶ

ɶ

ɶ

Active transformations are thus embedded in passive transformations.

This is equivalent to the active transformation of the object   :
B

B
ψ ξɶ ɶ

' R SB

B

B B

B B
ψ ξψ ψ ξξ → =
ɶ ɶ

ɶ ɶ

ɶ

ɶ



Behavior of spinors under Lorentz transformations

Rotated object

Let us consider the following transformation

of the basis vectors

1' R Ra a aγ γ γ −→ =
R is a proper or improper

Lorentz transformation

A generalized spinor,                   , composed of       ,  

then transforms according to      
(1,3)ClΦ∈ aγ

0,1,2,3a =

11 RR RR
A

A A A

BA
ψ ξ ψ ξ ψ ξ − −′ ′Φ = → Φ = = = Φ
ɶ ɶ

ɶɶ

The transformation (5) of the basis vectors has for a

consequence that the object        does not transform

only from the right, but also from the left.

Φ

(5)

Piazzese 1993:   Spinors cannot be interpreted

as the minimal ideals of

Clifford algebras



Behavior of spinors under Lorentz transformations

Rotated object

Let us consider the following transformation

of the basis vectors

1' R Ra a aγ γ γ −→ =
R is a proper or improper

Lorentz transformation

A generalized spinor,                   , composed of       ,  

then transforms according to      
(1,3)ClΦ∈ aγ

0,1,2,3a =

11 RR RR
A

A A A

BA
ψ ξ ψ ξ ψ ξ − −′ ′Φ = → Φ = = = Φ
ɶ ɶ

ɶɶ

The transformation (2) of the basis vectors has for a

consequence that the object        does not transform

only from the right, but also from the left.

Φ

(5)

Piazzese 1993:   Spinors cannot be interpreted

as the minimal ideals of

Clifford algebras

But: If the reference frame transforms as

' Raa aγ γγ → =
then

R RA A A

BAA
ψ ξ ψ ξ ψ ξ′ ′Φ = → Φ = = = Φ

ɶ

ɶɶ

ɶ

Transformation of a spinor

The ideal approach

is  OK 



Usually, reference frames are ``rotated’’ (Lorentz rotated)

according to

1' R R b

a a aa bLγγ γ γ−→ = =
A proper or improper

Lorentz transformation

Therefore, a ``rotated’’ observer sees  (generalized) spinors

transformed according to

1R R −′Φ → Φ = Φ

1γ

2γ

3γ

1'γ

2'γ

3'γ With respect to a new reference

frame, the object

is expanded as           

A

A
ψ ξΦ =
ɶ

ɶ

' 'A

A
ψ ξΦ =

ɶ

ɶ

1( )A B A

B
Lψ ψ −′ =

ɶ ɶɶ

ɶ

,A i B jα β≡ ≡ɶ

, 1,2,3,4

, 1,2,3,4i j

α β =

=

The corresponding matrix        transforms

from the left and from the right.

where

iαψ



Rotation in the                plane

0ϕ =

1 2( , )γ γ

1γ

2γ
1'γ

2'γ

Ψ Ψ

3

4

π
ϕ =

2ϕ π=

1'γ

2'γ

Ψ

If the observer, together with the reference

frame, starts to rotate, then after having

exhibited the                 turn, he observes

the same spinor , as he did at             . 

2ϕ π=

Ψ 0ϕ =

The sign of the spinor did not change.



Rotation in the                plane

0ϕ =

1 2( , )γ γ

1γ

2γ
1'γ

2'γ

Ψ Ψ

3

4

π
ϕ =

2ϕ π=

1'γ

2'γ

Ψ

If the observer, together with the reference

frame, starts to rotate, then after having

exhibited the                 turn, he observes

the same spinor , as he did at             . 

2ϕ π=

Ψ 0ϕ =

The sign of the spinor did not change.

This was a passive transformation. In the new reference frame the object

was observed to be transformed according to                     .

There must also exist the corresponding active transformation, such

that in a fixed reference frame the spinor transform as                      .                  Ψ

-1R R′Ψ = Ψ

-1R R′Ψ = Ψ



1) Rotation 

0 0 1 1 2 2 3

3 2 3

, , cos sin

sin cos

γ γ γ γ γ γ ϑ γ ϑ

γ γ ϑ γ ϑ

→ → → +

→ − +

11 21 31 41 11 21 31 41

1 2 1 2 1 2 1 2 1 2 1 2( 1 ) ( 1 )ψ ψ θ θ ψ θ ψ θ θ θ ψ ψ θ θ ψ θ ψ θ θ θ+ + + → +++

1 1

2 2

1 1

2 2

,θ θ

θ θ

θ θ

θ θ

→

→

→

→

A spinor of the first left ideal transforms as

This is a spinor of

the 2nd left ideal

L LRR R

A left handed spinor of the first ideal transforms into

a left handed spinor of the second ideal.

Case               : ϑ π= 0 0 1 1 2 2 3 3, , ,γ γ γ γ γ γ γ γ→ → → − → −

Examples



12 11 14 13

22 21 24 23

32 31 34 33

42 41 44 43

' iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

Under  the                rotation in the                 plane, a generalized spinor

11 21 31 41

1 2 1 2 1 2

12 22 32 42

1 2 1 2 1 2

13 23 33 43

1 2 1 2 1 2

14 24 34 44

1 2 1 2 1 2

( 1 )

( 1 )

( 1 )

( 1 )

ψ ψ θ θ ψ θ ψ θ θ θ

ψ ψ θ θ ψ θ ψ θ θ θ

ψ θ ψ θ ψ ψ θ θ θ θ

ψ θ ψ θ ψ ψ θ θ θ θ

Φ = + + +

+ + + +

+ + + +

+ + + +

transforms into

11 21 31 41

1 2 1 2 1 2

12 22 32 42

1 2 1 2 1 2

13 23 33 43

1 2 1 2 1 2

14 24 34 44

1 2 1 2 1 2

' ( 1 )

( 1 )

( 1 )

( 1 )

ψ ψ θ θ ψ θ ψ θ θ θ

ψ ψ θ θ ψ θ ψ θ θ θ

ψ θ ψ θ ψ ψ θ θ θ θ

ψ θ ψ θ ψ ψ θ θ θ θ

Φ = + + +

+ + + +

+ + + +

+ + + +

ϑ π=
2 3( , )γ γ

The matrix of components

1 12 13 14

2 22 23 24

3 3

1

1

1 2 33 34

4 42 43 41 4

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

transforms into

The spinor of the 1st ideal transforms into the spinor of the 2nd ideal



11 1 2 21 1 2 1 2

12 1 2 22 1 2 1 2

,

,

ξ θ θ ξ θ θ θ θ

ξ θ θ ξ θ θ θ θ

= =

= =

0 0 1 1 2 2 3 3, , ,γ γ γ γ γ γ γ γ→ → → − → −Rotation

gives
1 1 2 2 1 1 2 2, , ,θ θ θ θ θ θ θ θ→ → → →

Therefore, the spinor basis states transform as

11 12 21 22

12 11 22 21

,

,

ξ ξ ξ ξ

ξ ξ ξ ξ

→ →

→ →

They are eigenvalues of the spin operator

11 111 22 21 11 2,
1 1

2 2 2 2

i i
ξ ξ γ ξγ γ ξγ− = − = −

1 2 1 212 12 22 22,
1 1

2 2 2 2

i i
γ γ γ γξ ξ ξ ξ− = − − =

1 22

i γ γ−

spinor basis states of the 1st left ideal

spinor basis states of the 2nd left ideal

Under the             rotation,  the spin         state

of the 1st ideal transforms into the spin           

state of the 2nd ideal, and vice versa. 

ϑ π= 1/ 2
1/ 2−



New basis states

1

1/2 11 22 1/2 11 22

1

1/2 21 12 1/2 21 12

2

2

1 1
( (

2 2

1 1
( (

) ,

2 2

)

) , )

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ− −

+ −

+ −

= =

= =

0 0 1 1 2 2 3 3, , ,γ γ γ γ γ γ γ γ→ → → − → −Under the rotation

we have

1 1

1/2 12 21 1/2

1 1

1/2 22 11 1/2

1
(

2

)(

)

1

2

ξ ξ ξ ξ

ξ ξ ξ ξ

−

−

→ + =

→ + =

1/2 12 21 1/2

1/2 22 11 1/

2 2

2 2

2

1
( )

)

2

1
(

2

ξ ξ ξ ξ

ξ ξ ξ ξ

−

−

→ − = −

→ − =−

1 1

1 2 1/2 1/2

1

2 2

i
γ γ ξ ξ± ±− = ± 1 2 1/2

2 2

1/2

1

2 2

i
γ γ ξ ξ± ±− = ±

These states have definite spin projection.

Under the             rotation,  the spin         state transforms into the spin           state,

and vice versa.

ϑ π= 1/ 2 1/ 2−

A superposition of the states

of the 1st and the 2nd ideal



2) Space inversion

0 0 0' , ' , 1,2,3r r r rγ γ γ γ γ γ→ = → = − =

11 21 31 41 11 21 31 41

1 2 1 2 1 2 1 2 1 2 1 2( 1 ) ( 1 )ψ ψ θ θ ψ θ ψ θ θ θ ψ ψ θ θ ψ θ ψ θ θ θ+ + + → − + − +

1

1 0 3 12

1

2 1 2 22

1

1 0 3 12

1

2 1 2 22

( ) ,

( )

( )

( )

i

i

θ γ γ θ

θ γ γ θ

θ γ γ θ

θ γ γ θ

→ − =

→ − − = −

→ + =

→ − + = −

A spinor of the first left ideal transforms as

This is a spinor of

the 3rd left ideal

L LRR R

A left handed spinor of the first ideal transforms into

a right handed spinor of the third ideal.



In general, under space inversion, the matrix of the spinor basis elements

1 2 1 3 1 4

1 2 1 1 2 2 2 3 2 4

1 1 1 2 3 4

2 1 2 2 1 2 3 1 2 4

i

f f f f

f f f f

f f f f

f f f f

α

θ θ
θ θ θ θ θ θ

ξ
θ θ
θ θ θ θ θ θ

 
 
 =
 
 
 

transforms into

3 4 1 1 1 2

1 2 3 1 2 4 2 1 2 2

1 3 1 4 1 2

2 3 2 4 1 2 1 1 2 2

i

f f f f

f f f f

f f f f

f f f f

α

θ θ
θ θ θ θ θ θ

ξ
θ θ

θ θ θ θ θ θ

 − − − −
 
 ′ =
 − − − −
 
 

The matrix of components

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

transforms into

33 34 31 32

43 44 41 42

13 14 11 12

23 24 21 22

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 − − − −
 
 =
 − − − −
 
 



In general, under space inversion, the matrix of the spinor basis elements

1 2 1 3 1 4

1 2 1 1 2 2 2 3 2 4

1 1 1 2 3 4

2 1 2 2 1 2 3 1 2 4

i

f f f f

f f f f

f f f f

f f f f

α

θ θ
θ θ θ θ θ θ

ξ
θ θ
θ θ θ θ θ θ

 
 
 =
 
 
 

transforms into

3 4 1 1 1 2

1 2 3 1 2 4 2 1 2 2

1 3 1 4 1 2

2 3 2 4 1 2 1 1 2 2

i

f f f f

f f f f

f f f f

f f f f

α

θ θ
θ θ θ θ θ θ

ξ
θ θ

θ θ θ θ θ θ

 − − − −
 
 ′ =
 − − − −
 
 

The matrix of components

1 12 13 14

2 22 23 24

3 3

1

1

1 2 33 34

4 42 43 41 4

iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 =
 
 
 

transforms into

33 34 3 32

43 44 4 42

13

1

1

114 1 12

23 24 12 22

' iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 − − − −
 
 =
 − − − −
 
 

The spinor of the 1st ideal transforms into the spinor of the 3rd ideal



Generalized Dirac equation (Dirac-Kähler equation1)

)( 0i mµ
µγ ∂ − Φ = A A i

A iA

α
αφ γ ψ ξ ψ ξΦ = = =

ɶ

ɶ

( ) 0( )A A

B B

Bi mµ
µγ δ ψ∂ − =

ɶ

ɶ

ɶɶ

ɶ

( ) ( )A i

jB

µ µ α
βγ γ δ=

ɶ

ɶ

( ) 0( ) ii m β
µ

µ α α
β βδγ ψ∂ − =

‡( ) ( )A A

SB B

µ µξ γ ξ γ〈 〉 ≡
ɶ ɶ

ɶ ɶ

( ) 0ii mµ
µγ ψ∂ − =

4 )d (i j

ijm zI x i µ
µψ γ ψ∂ −= ∫

Action
‡

( )( )

1 0 0 0 1 0 0 0
0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0
0 0 0 1 0 0 0 1

( ) *

,

i j ijBA AB

ij

z z z z

z z

α β αβ

αβ

ξ ξ
   
   
   − −   − −   

= = =

= =

ɶ ɶ ɶ ɶ

Metric in spinor space

Spinor basis of Cl(1,3)

Here we omit spinor index α

is spinor index of a left minimal ideal.

i runs over four left ideals of Cl(1,3)

α

1E. Kähler, Rendiconti di Matematica 21 (1962) 425;

S.I. Kruglov, Dirack-Kähler Equation, arXiv: hep-th/0110251 (and many references therein)

D. Spehled, and G.C. Marques, Eur. Phys. J. 61 (2009) 75



Gauge invariant action:

4 ( )d Di j

ijm zI x i µ
µψ ψγ −= ∫

i i i j

jD Gµ µ µψ ψ ψ= ∂ +

, 1,2,3,4i j =

This action contains the ordinary particles and mirror particles.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

i iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 ≡ =
 
 
 

This index is omitted

The            gauge group

acting within the 1st and 2nd

ideal can be interpreted as

the weak interaction gauge

group for ordinary particles.

The            gauge group

acting within the 3rd and 4th

ideal can be interpreted as

the weak interaction gauge

group for mirror particles.

SU(2)SU(2)SU(2) SU(2)



Gauge covariant action:

4 ( )d Di j

ijm zI x i µ
µψ ψγ −= ∫

i i i j

jD Gµ µ µψ ψ ψ= ∂ +

, 1,2,3,4i j =

This action contains the ordinary particles and mirror particles.

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

i iα

ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

 
 
 ≡ =
 
 
 

This index is omitted

The            gauge group

acting within the 1st and 2nd

ideal can be interpreted as

the weak interaction gauge

group for ordinary particles.

The            gauge group

acting within the 3rd and 4th

ideal can be interpreted as

the weak interaction gauge

group for mirror particles.

SU(2)SU(2)SU(2) SU(2)

The corresponding two kinds of weak

interaction gauge fields that can be

transformed into each other by space

inversion are contained in        . 
i

jGµ



Mirror particles were first proposed by  Lee and Yang,   Phys. Rev. 104 (1956) 254

Subsequently, the idea of mirror particles has been pursued by

The possibility that mirror particles are responsible for dark matter

has been explored in many works, e.g.:

I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Soviet J. Nucl. Phys. 5 (1966) 837.

M. Pavšič, Int. J. Theor. Phys. 9 (1974) 229.

E.W. Kolb, D. Seckel, M.S. Turner, Nature 314 (1985) 415

R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272 (1991) 67;

R. Foot, H. Lew, R.R. Volkas, Mod. Phys. Lett. A 7 (1992) 2567;

R. Foot, Mod. Phys. Lett. 9 (1994) 169;

R. Foot, R.R. Volkas, Phys. Rev. D 52 (1995) 6595.

H. M. Hodges, Phys. Rev. D 47 (1993) 456;

R. Foot, Phys. Lett. B 452 (1999) 83;

R. Foot, Phys. Lett. B 471 (1999) 191;

R.N. Mohapatra, Phys. Rev. D 62 (2000) 063506;

Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503 (2001). 
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Subsequently, the idea of mirror particles has been pursued by

The possibility that mirror particles are responsible for dark matter

has been explored in many works, e.g.:

I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Soviet J. Nucl. Phys. 5 (1966) 837.

M. Pavšič, Int. J. Theor. Phys. 9 (1974) 229.

E.W. Kolb, D. Seckel, M.S. Turner, Nature 314 (1985) 415
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R. Foot, Mod. Phys. Lett. 9 (1994) 169;

R. Foot, R.R. Volkas, Phys. Rev. D 52 (1995) 6595.

H. M. Hodges, Phys. Rev. D 47 (1993) 456;

R. Foot, Phys. Lett. B 452 (1999) 83;

R. Foot, Phys. Lett. B 471 (1999) 191;

R.N. Mohapatra, Phys. Rev. D 62 (2000) 063506;

Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503 (2001). 

A demonstration that mirror particles can be explained in terms of

algebraic spinors (elements of Clifford algebras) was presented in

M. Pavšič, Phys. Lett. B 692 (2010) 212.



Clifford algebras and the concept of algebraic spinors opens Pandora’s box of possibilities

that have been explored in the attempts to find a unified theory of fundamental particles and forces.

See, e.g.,

M. Pavšič: The Landscape of Theoretical Physics: A Global view;

From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle

(Kluwer Academic, 2001)

Class. Quant. Grav. 20, 2697-2714  (2003); gr-qc/0111092 

Kaluza-Klein theory without extra dimensions: Curved Clifford space, 

Phys. Lett. B614, 85-95 (2005);  hep-th/0412255

Spin gauge theory of gravity in Clifford space: A Realization of Kaluza-Klein theory in

4- dimensional spacetime, Int. J. Mod. Phys. A21, 5905-5956 (2006);  gr-qc/0507053

Beyond the relativistic point particle: A reciprocally invariant system, 

Phys. Lett. B 680, 526-532 (2009)

On the relativity in configurations space: A renewed physics in sight,

0912.3669 [gr-qc]

Other authors: Hestenes, Smith, Trayling, Baylis, Roepstorff, Chisholm,

Crawford, Castro, Schmeikel

A Novel View on the Physical Origin of E8,  J. Phys. A  41 (2008) 332001;

0806.4365 [hep-th]



Conclusion

Normally, our measuring tools (and reference frames) rotate as vectors:                       .

Then any other Clifford number,      ,  also transforms as      .

This means that spinors, since being embedded in        ,  transform in the same way.

But if we take into account the transformations within the entire Clifford algebra,

then any Clifford number can transform as                       , and so can a spinor.  

In particular, if            , then we have the usual transformation of spinors.

According to Piazzese, such behavior of spinors under rotations is an argument

against spinors as members of minimal ideals of a Clifford algebra, because

spinors must transform as                   .

We have pointed out how  the enigmatic properties of weak

interactions under space inversion can be understood in terms

of geometric (algebraic) spinors.

When our reference frame undergoes a space inversion, then

a spinor of one minimal ideal transforms into a spinor of another

minimal ideal of Clifford algebra.

1' R Rv v −=
Φ 1' R R−Φ = Φ

Φ

R′Ψ = Ψ

' R SΦ = Φ
S 1=



Auxiliary slides

Not presented in this talk. Intended for discussion only.



Finite dimensional description of extended objects

Instead of infinitely many degrees of freedom associated with an extended object,

we may consider  a finite number of degrees of freedom.

The Earth has a huge (practically infinite) number of degree of

freedom. And yet, when describing the motion of the Earth around

the Sun,  we neglect them all, except for the coordinates

of  the centre of mass.



Strings and branes have infinitely many degrees of freedom.

But at first approximation we can consider just the centre of mass.

4M

( )aX µ ξ

X µ

Next approximation is in considering the holographic coordinates of the

oriented area enclosed by the string.

1x

2x

12x

23x
13x

3x



We may go further and search for eventual thickness of the object.

If the string has finite thickness, i.e., if actually it is not a string, but a 2-brane,

then there exist the corresponding volume degrees of freedom.

4M

( )aX µ ξ

X µ 123X

In general, for an extended object in M4, we have 16 coordinates 

1... , 0,1,2,3,4rMx x rµ µ≡ =

They are the projections of r-dimensional volumes (areas) onto the coordinate planes.

Oriented r-volumes can be elegantly described by Clifford algebra.



1 2 1 2

1
d d d d d d

2

a b ab

a b a be e e eξ ξ ξ ξ ξΣ = ∧ = ∧ = ∧

1
d d

2

1
d ( )

2

1

2

1

2

B B

B

ab

a b

ab

a b a b

X X X

X X p X X

µν µ ν
µ ν µ ν

µ ν ν µ
µ ν

γ γ ξ γ γ

ξ γ γ

Σ Σ

Σ

=Σ ≡ ∧ ∂ ∂ ∧

= ∂ ∂ − ∂ ∧

∫ ∫

∫

1 2 2 1d d d d dab a b a b

a ae X µ
µ

ξ ξ ξ ξ ξ

γ

= −

= ∂

1
[ ] d ( )

2 B

ab

a b a bX B X X X Xµν µ ν ν µξ
Σ

= ∂ ∂ − ∂ ∂∫

1

2
[ ] d

B

X X
X B s X X

s s

ν
µν µ

µ
ν ∂ ∂

= − ∂ ∂ 
∫�

( )aX µ ξ

Mapping : 

X µν

X µν

dΣ

B



Instead of the usual relativity formulated in spacetime in which the interval is

we are studying the theory in which the interval is extended to

the space of r-volumes (called Clifford space):

2d d ds x xµ ν
µνη=

2d d dM N

MNS G x x= 1...d d , 0,1,2,3,4rMx x rµ µ≡ =

Coordinates of Clifford space can be used to model extended objects.

They are a generalization of the concept of center of mass.

Instead of describing  extended objects in ``full detail’’, we

can describe them in terms of the center of mass, area and

volume coordinates. 

In particular, extended objects can be  fundamental strings or branes.



Metric

2 2 ‡d | d | d *d d d d dM N M

MN MS X X X x x G x x≡ ≡ = ≡

‡ ‡

0MN M N M NG γ γ γ γ= ∗ ≡〈 〉

Quadratic form in C-space

where

1 2

1 2

...

... 0,1,2,d 3,4d d ,r

r

M

MX x rx µ µ µ
µ µ µγ γ == ≡

Signature: (8,8)+ + + + + + + +− − − − − − − −

In flat C-space:

1 2 1 2... ...
r rµ µ µ µ µ µγ γ γ γ= ∧ ∧ ∧

at every point ∈ E C

1 2 2 1

‡( ... ) ...
r rµ µ µ µ µ µγ γ γ γ γ γ=

Reversion



Dynamics

Action:

Generalization of ordinary relativity

Equations of motion:

These equations imply area (volume)

motion

Metric:
Diagonal metric

Signature: (8,8)

The above dynamics holds for tensionless branes.

For the branes with tension one has to introduce

curved Clifford space. 

1/2( )M N

MNI d X Xτ η= ∫ ɺ ɺ

2

2

d
0

d

M
M X

X
τ

≡ =ɺɺ

+ + + + + + + +− − − − − − − −

MNη



C
( )MX τ

4M

( )X µ τ

A world line in C represents

the evolution of  a  `thick’ particle

in spacetime
4M

Thick particle can be an

aggregate p-branes for

various p=0,1,2,…

But such interpretation is not

obligatory. 

Thick point particles and strings



C

4M

( )X µ τ

A world line in C represents

the evolution of  a  `thick’ particle

in spacetime
4M

Thick particle can be an

aggregate p-branes for

various p=0,1,2,…

But such interpretation is not

obligatory. 

Thick particle may be a conglomerate of whatever

extended objects that can be sampled by

polyvector coordinates 1 2... rMX X µµ µ≡

( )MX τ



C

4M

( )X µ τ

A world sheet in C represents

the evolution of  a  `thick’ string

in spacetime
4M

Thick string can be an

aggregate p-branes for

various p=0,1,2,…

But such interpretation is not

obligatory. 

Thick string may be a conglomerate of whatever

extended objects that can be sampled by

polyvector coordinates 1 2... rMX X µµ µ≡

( , )MX τ σ

)( ,CX
µ τ σ



Instead of infinitely thin strings we thus consider  thick strings.

Their thickness is encoded in polyvector coordinates                          .

Usual strings are infinitely thin object. Although called `extended objects’,

they are not fully extended. Infinitely thin strings are

singular objects
1 2... rMX X µµ µ≡

String action

' 'd ( )d
2

M N M N

MNX X X XI Gσ
κ

τ= −∫ ɺ ɺ Conformal gauge

No extra dimensions

of the spacetime

are required
The necessary extra dimensions for consistency of string theory

are in 16-dimensional Clifford space.

Jackiw-Kim-Noz definition of vacuum

No central terms in the Virasoro algebra, if the space in which the

string lives has signature ( ... )+ + + − − −

The space in which out string lives is Clifford space.

Its dimension is 16, and signature (8,8).



Instead of infinitely thin strings we thus consider  thick strings.

Their thickness is encoded in polyvector coordinates                          .

Usual strings are infinitely thin object. Although called `extended objects’,

they are not fully extended. Infinitely thin strings are

singular objects
1 2... rMX X µµ µ≡

String action

' 'd ( )d
2

M N M N

MNX X X XI Gσ
κ

τ= −∫ ɺ ɺ Conformal gauge

No extra dimensions

of the spacetime

are required
The necessary extra dimensions for consistency of string theory

are in 16-dimensional Clifford space.

Jackiw-Kim-Noz definition of vacuum

No central terms in the Virasoro algebra, if the space in which the

string lives has signature ( ... )+ + + − − −

The space in which out string lives is Clifford space.

Its dimension is 16, and signature (8,8).

,(1, , ,..

( , , ,.

.

..)

)M

M

M

M

X

X

x x x

µ µν

µ µν

γ γ γ

γ

=

=

Polyvector

(It contains spinors)


