ON GEOMETRIC SPINORS AND THEIR TRANSFORMATIONS PROPERTIES

Matej Pavšǐ̌
J. Stefan Institute, Ljubljana, Slovenia

Contents

- Introduction

Spinors as Clifford numbers
Transformations of Clifford numbers

- Clifford algebra and spinors in Minkowski space

Four independent spinors

- Behavior of spinors under proper and improper Lorentz transformations

Examples: rotation in the (y, z)-plane space inversion

- Generalized Dirac equation (Dirac-Kähler equation)
- Conclusion

Introduction

We will follow the approach in which spinors are constructed in terms of nilpotents formed from the spacetime basis vectors represented as generators of the Clifford algebra $C l(1,3)$.

$$
\begin{aligned}
& \gamma_{a} \cdot \gamma_{b} \equiv \frac{1}{2}\left(\gamma_{a} \gamma_{b}+\gamma_{b} \gamma_{a}\right)=\eta_{a b} \\
& \gamma_{a} \wedge \gamma_{b} \equiv \frac{1}{2}\left(\gamma_{a} \gamma_{b}-\gamma_{b} \gamma_{a}\right)
\end{aligned}
$$

The inner, symmetric, product of basis vectors γ_{a} gives the metric, $\eta_{a b}$.

The outer, antisymmetric, product of basis vectors gives the basis bivector.

Generic Clifford number

$$
\Phi=\phi^{A} \gamma_{A} \quad \text { where } \quad \gamma_{A} \equiv \gamma_{a_{1} a_{2} \ldots a_{r}} \equiv \gamma_{a_{1}} \wedge \gamma_{a_{2}} \wedge \ldots \wedge \gamma_{a_{r}} \quad r=0,1,2,3,4
$$

Spinors are particular Clifford numbers

$$
\Psi=\psi^{\alpha} \xi_{\alpha}
$$

where ξ_{α} are spinor basis elements, composed from

In general, a Clifford number transforms according to
(1) $\Phi \rightarrow \Phi^{\prime}=\mathrm{R}_{\mathrm{R}} \Phi \mathrm{S}_{-}$

Clifford numbers

$$
\text { e.g., } \quad \mathrm{R}=\mathrm{e}^{\frac{1}{2} \alpha^{A} \gamma_{A}}, \quad \mathrm{~S}=\mathrm{e}^{\frac{1}{\beta^{2} A^{4} \gamma_{A}}}
$$

In particular, if $\mathrm{S}=1$, we have

$$
\Phi \rightarrow \Phi^{\prime}=\mathrm{R} \Phi
$$

As an example, let us consider the case

$$
\mathrm{R}=\mathrm{e}^{\frac{1}{2} \alpha \gamma_{1} \gamma_{2}}=\cos \frac{\alpha}{2}+\gamma_{1} \gamma_{2} \sin \frac{\alpha}{2}, \quad \mathrm{~S}=\mathrm{e}^{\frac{1}{2} \beta \gamma_{1} \gamma_{2}}=\cos \frac{\beta}{2}+\gamma_{1} \gamma_{2} \sin \frac{\beta}{2}
$$

and examine, how various Clifford numbers, $X=X^{C} \gamma_{C}$, transform under (1), which now reads:

$$
X \rightarrow X^{\prime}=\mathrm{R} X \mathrm{~S}
$$

(i) If

$$
X=X^{1} \gamma_{1}+X^{2} \gamma_{2}
$$

then

$$
X^{\prime}=X^{1}\left(\gamma_{1} \cos \frac{\alpha-\beta}{2}+\gamma_{2} \sin \frac{\alpha-\beta}{2}\right)+X^{2}\left(-\gamma_{1} \sin \frac{\alpha-\beta}{2}+\gamma_{2} \cos \frac{\alpha-\beta}{2}\right)
$$

(ii) $\quad X=X^{3} \gamma_{3}+X^{123} \gamma_{123}$

$$
X^{\prime}=X^{3}\left(\gamma_{3} \cos \frac{\alpha+\beta}{2}+\gamma_{123} \sin \frac{\alpha+\beta}{2}\right)+X^{123}\left(-\gamma_{2} \sin \frac{\alpha+\beta}{2}+\gamma_{123} \cos \frac{\alpha+\beta}{2}\right)
$$

(iii) $X=s \underline{1}+X^{12} \gamma_{12}$

$$
X^{\prime}=s\left(\underline{1} \cos \frac{\alpha+\beta}{2}+\gamma_{12} \sin \frac{\alpha+\beta}{2}\right)+X^{2}\left(-\underline{1} \sin \frac{\alpha+\beta}{2}+\gamma_{12} \cos \frac{\alpha+\beta}{2}\right)
$$

(iv) $\quad X=\tilde{X}^{1} \gamma_{5} \gamma_{1}+\tilde{X}^{2} \gamma_{5} \gamma_{2}$

$$
X^{\prime}=\tilde{X}^{1}\left(\gamma_{5} \gamma_{1} \cos \frac{\alpha-\beta}{2}+\gamma_{5} \gamma_{2} \sin \frac{\alpha-\beta}{2}\right)+\tilde{X}^{2}\left(-\gamma_{5} \gamma_{1} \sin \frac{\alpha-\beta}{2}+\gamma_{5} \gamma_{2} \cos \frac{\alpha-\beta}{2}\right)
$$

Usual rotations of vectors or pseudovectors are reproduced, if the angle β for the right transformation is equal to minus angle α for the left transformation, i.e., if

$$
\beta=-\alpha
$$

Then all other transformations which mix the grade vanish.

Clifford algebra and spinors in Minkowski space

Witt basis

$$
\begin{array}{ll}
\theta_{1}=\frac{1}{2}\left(\gamma_{0}+\gamma_{3}\right), & \theta_{2}=\frac{1}{2}\left(\gamma_{1}+i \gamma_{2}\right), \\
\bar{\theta}_{1}=\frac{1}{2}\left(\gamma_{0}-\gamma_{3}\right), & \overline{\theta_{2}}=\frac{1}{2}\left(\gamma_{1}-i \gamma_{2}\right)
\end{array}
$$

The new basis vectors satisfy

Fermionic anticommutation relations

$$
\left\{\theta_{a}, \bar{\theta}_{b}\right\}=\eta_{a b}, \quad\left\{\theta_{a}, \theta_{b}\right\}=0, \quad\left\{\bar{\theta}_{a}, \bar{\theta}_{b}\right\}=0
$$

We now observe that the product

$$
f=\bar{\theta}_{1} \bar{\theta}_{2}
$$

satisfies

$$
\bar{\theta}_{a} f=0, \quad a=1,2
$$

f can be interpreted as 'vacuum', and $\bar{\theta}_{a}$ can be interpreted as operators that annihilate f.

An object constructed as a superposition

$$
\Psi=\left(\psi^{0} \underline{1}+\psi^{1} \theta_{1}+\psi^{2} \theta_{2}+\psi^{12} \theta_{1} \theta_{2}\right) f
$$

is a 4-component spinor.

It is convenient to change the notation:

$$
\Psi=\left(\psi^{1} \underline{1}+\psi^{2} \theta_{1} \theta_{2}+\psi^{3} \theta_{1}+\psi^{4} \theta_{2}\right) f=\psi^{\alpha} \xi_{\alpha}, \quad \alpha=1,2,3,4
$$

Even part

$$
\Psi_{L}=\left(\psi^{1} \underline{1}+\psi^{2} \theta_{1} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2}
$$

Odd part

$$
\begin{gathered}
\Psi_{R}=\left(\psi^{3} \theta_{1}+\psi^{4} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2} \\
i \gamma_{5} \Psi_{L}=-\Psi_{L} \\
i \gamma_{5} \Psi_{R}=\Psi_{R}
\end{gathered}
$$

$$
\gamma_{5}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}
$$

Under the transformations

$$
\Psi \rightarrow \Psi^{\prime}=\mathrm{R} \Psi, \quad \mathrm{R}=\exp \left[\frac{1}{2} \gamma_{a_{1}} \gamma_{a_{2}} \varphi\right]
$$

Ψ transforms as a Dirac spinor.

It is convenient to change the notation:

$$
\Psi=\left(\psi^{1} \underline{1}+\psi^{2} \theta_{1} \theta_{2}+\psi^{3} \theta_{1}+\psi^{4} \theta_{2}\right) f=\psi^{\alpha} \xi_{\alpha}, \quad \alpha=1,2,3,4
$$

$$
f=\bar{\theta}_{1} \bar{\theta}_{2}
$$

Even part $\quad \Psi_{L}=\left(\psi^{1} \underline{1}+\psi^{2} \theta_{1} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2}$

Spinor basis

Odd part $\quad \Psi_{R}=\left(\psi^{3} \theta_{1}+\psi^{4} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2}$

$$
\begin{aligned}
& i \gamma_{5} \Psi_{L}=-\Psi_{L} \\
& i \gamma_{5} \Psi_{R}=\Psi_{R}
\end{aligned}
$$

$$
\gamma_{5}=\gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}
$$

Under the transformations

$$
\Psi \rightarrow \Psi^{\prime}=\mathrm{R} \Psi, \quad \mathrm{R}=\exp \left[\frac{1}{2} \gamma_{a_{1}} \gamma_{a_{2}} \varphi\right]
$$

Ψ transforms as a Dirac spinor.
Example:

$$
\mathrm{R}=\mathrm{e}^{\frac{1}{2} \gamma_{1} \gamma_{2} \varphi}=\cos \frac{\varphi}{2}+\gamma_{1} \gamma_{2} \sin \frac{\varphi}{2}
$$

$\Psi \rightarrow \Psi^{\prime}=\mathrm{R} \Psi=\left(\mathrm{e}^{\frac{i \varphi}{2}} \psi^{1} \underline{1}+\mathrm{e}^{-\frac{i \varphi}{2}} \psi^{2} \theta_{1} \theta_{2}+\mathrm{e}^{\frac{i \varphi}{2}} \psi^{3} \theta_{1}+\mathrm{e}^{-\frac{i \varphi}{2}} \psi^{4} \theta_{2}\right) f$
This is the well-known transformation of a 4-component spinor.

Four independent spinors

Four different possible vacua:

$$
f_{1}=\bar{\theta}_{1} \bar{\theta}_{2}, \quad f_{2}=\theta_{1} \theta_{2}, \quad f_{3}=\theta_{1} \bar{\theta}_{2}, \quad f_{3}=\bar{\theta}_{1} \theta_{2}
$$

Four different kinds of spinors:

$$
\begin{aligned}
& \Psi^{1}=\left(\psi^{11} \underline{1}+\psi^{21} \theta_{1} \theta_{2}+\psi^{31} \theta_{1}+\psi^{41} \theta_{2}\right) f_{1} \\
& \Psi^{2}=\left(\psi^{12} \underline{1}+\psi^{22} \bar{\theta}_{1} \bar{\theta}_{2}+\psi^{32} \bar{\theta}_{1}+\psi^{42} \bar{\theta}_{2}\right) f_{2} \\
& \Psi^{3}=\left(\psi^{13} \bar{\theta}_{1}+\psi^{23} \theta_{2}+\psi^{33} \underline{1}+\psi^{43} \bar{\theta}_{1} \theta_{2}\right) f_{3} \\
& \Psi^{4}=\left(\psi^{14} \theta_{1}+\psi^{24} \bar{\theta}_{2}+\psi^{34} \underline{1}+\psi^{44} \theta_{1} \bar{\theta}_{2}\right) f_{4}
\end{aligned}
$$

Each of those spinors lives in a different minimal left ideal of $C l(1,3)$.

In general, complexified version

An arbitrary element of $C l(1,3)$ is the sum:

$$
\Phi=\Psi^{1}+\Psi^{2}+\Psi^{3}+\Psi^{4}=\psi^{\alpha i} \xi_{\alpha i} \equiv \psi^{\tilde{A}} \xi_{\tilde{A}}
$$

$$
\alpha=1,2,3,4 ; \quad i=1,2,3,4
$$

Generalized spinor'

Four independent spinors

Four different possible vacua:

$$
f_{1}=\bar{\theta}_{1} \bar{\theta}_{2}, \quad f_{2}=\theta_{1} \theta_{2}, \quad f_{3}=\theta_{1} \bar{\theta}_{2}, \quad f_{3}=\bar{\theta}_{1} \theta_{2}
$$

Four different kinds of spinors:

$$
\begin{aligned}
& \Psi^{1}=\left(\psi^{11} \underline{1}+\psi^{21} \theta_{1} \theta_{2}+\psi^{31} \theta_{1}+\psi^{41} \theta_{2}\right) f_{1} \\
& \Psi^{2}=\left(\psi^{12} \underline{1}+\psi^{22} \bar{\theta}_{1} \bar{\theta}_{2}+\psi^{32} \bar{\theta}_{1}+\psi^{42} \bar{\theta}_{2}\right) f_{2} \\
& \Psi^{3}=\left(\psi^{13} \bar{\theta}_{1}+\psi^{23} \theta_{2}+\psi^{33} \underline{1}+\psi^{43} \bar{\theta}_{1} \theta_{2}\right) f_{3} \\
& \Psi^{4}=\left(\psi^{14} \theta_{1}+\psi^{24} \bar{\theta}_{2}+\psi^{34} \underline{1}+\psi^{44} \theta_{1} \bar{\theta}_{2}\right) f_{4}
\end{aligned}
$$

Each of those spinors lives in a different minimal left ideal of $C l(1,3)$.

In general, complexified version

An arbitrary element of $C l(1,3)$ is the sum:

$$
\Phi=\Psi^{1}+\Psi^{2}+\Psi^{3}+\Psi^{4}=\psi^{\alpha i} \xi_{\alpha i} \equiv \psi^{\tilde{A}} \xi_{\tilde{A}}
$$

$$
\alpha=1,2,3,4 ; \quad i=1,2,3,4
$$

Matrix notation:

$$
\psi^{\alpha i}=\left(\begin{array}{llll}
\psi^{11} & \psi^{12} & \psi^{13} & \psi^{14} \\
\psi^{21} & \psi^{22} & \psi^{23} & \psi^{24} \\
\psi^{31} & \psi^{32} & \psi^{33} & \psi^{34} \\
\psi^{41} & \psi^{42} & \psi^{43} & \psi^{44}
\end{array}\right), \quad \xi_{\tilde{A}} \equiv \xi_{\alpha i}=\left(\begin{array}{cccc}
f_{1} & f_{2} & \bar{\theta}_{1} f_{3} & \theta_{1} f_{4} \\
\theta_{1} \theta_{2} f_{1} & \bar{\theta}_{1} \bar{\theta}_{2} f_{2} & \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} \\
\theta_{1} f_{1} & \bar{\theta}_{1} f_{2} & f_{3} & f_{4} \\
\theta_{2} f_{1} & \bar{\theta}_{2} f_{2} & \bar{\theta}_{1} \theta_{2} f_{3} & \theta_{1} \bar{\theta}_{2} f_{4}
\end{array}\right) \quad \text { Spinor basis of } C l(1,3)
$$

Four independent spinors

Four different possible vacua:

$$
f_{1}=\bar{\theta}_{1} \bar{\theta}_{2}, \quad f_{2}=\theta_{1} \theta_{2}, \quad f_{3}=\theta_{1} \bar{\theta}_{2}, \quad f_{3}=\bar{\theta}_{1} \theta_{2}
$$

Four different kinds of spinors:

$$
\begin{aligned}
& \Psi^{1}=\left(\psi^{11} \underline{1}+\psi^{21} \theta_{1} \theta_{2}+\psi^{31} \theta_{1}+\psi^{41} \theta_{2}\right) f_{1} \\
& \Psi^{2}=\left(\psi^{12} \underline{1}+\psi^{22} \bar{\theta}_{1} \bar{\theta}_{2}+\psi^{32} \bar{\theta}_{1}+\psi^{42} \bar{\theta}_{2}\right) f_{2} \\
& \Psi^{3}=\left(\psi^{13} \bar{\theta}_{1}+\psi^{23} \theta_{2}+\psi^{33} \underline{1}+\psi^{43} \bar{\theta}_{1} \theta_{2}\right) f_{3} \\
& \Psi^{4}=\left(\psi^{14} \theta_{1}+\psi^{24} \bar{\theta}_{2}+\psi^{34} \underline{1}+\psi^{44} \theta_{1} \bar{\theta}_{2}\right) f_{4}
\end{aligned}
$$

Each of those spinors lives in a different minimal left ideal of $C l(1,3)$.

In general, complexified version

An arbitrary element of $C l(1,3)$ is the sum:

$$
\Phi=\Psi^{1}+\Psi^{2}+\Psi^{3}+\Psi^{4}=\psi^{\alpha i} \xi_{\alpha i} \equiv \psi^{\tilde{A}} \xi_{\tilde{A}}
$$

$$
\alpha=1,2,3,4 ; \quad i=1,2,3,4
$$

$$
\xi_{\bar{A}} \equiv \xi_{\alpha i}=\left\{\underline{1} f_{1}, \theta_{1} \theta_{2} f_{1}, \ldots, \theta_{1} f_{4}, \bar{\theta}_{2} f_{4}, \underline{1} f_{4}, \bar{\theta}_{1} \theta_{2} f_{4}\right\},
$$

Matrix notation:
$\psi^{\alpha i}=\left(\begin{array}{c:ccc}\psi^{11} & \psi^{12} & \psi^{13} & \psi^{14} \\ \psi^{21} & \psi^{22} & \psi^{23} & \psi^{24} \\ \psi^{31} & \psi^{32} & \psi^{33} & \psi^{34} \\ \psi^{41} & \psi^{42} & \psi^{43} & \psi^{44}\end{array}\right), \quad \xi_{\tilde{A}} \equiv \xi_{\alpha i}=\left(\begin{array}{c:c:cc}f_{1} & f_{2} & \theta_{1} f_{3} & \theta_{1} f_{4} \\ \theta_{1} \theta_{2} f_{1} & \theta_{1} \bar{\theta}_{2} f_{2} & \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} \\ \theta_{1} f_{1} & \bar{\theta}_{1} f_{2} & f_{3} & f_{4} \\ \theta_{2} f_{1} & \bar{\theta}_{2} f_{2} & \bar{\theta}_{1} \theta_{2} f_{3} & \theta_{1} \bar{\theta}_{2} f_{4}\end{array}\right)$

A general transformation is

$$
\Phi=\psi^{\tilde{A}} \xi_{\tilde{A}} \rightarrow \Phi^{\prime}=\mathrm{R} \Phi \mathrm{~S}=\psi^{\tilde{A}} \xi_{\tilde{A}}^{\prime}=\psi^{A} L_{A}{ }^{B} \xi_{B}=\psi^{\prime B} \xi_{B}
$$

where

$$
\xi_{\tilde{A}}^{\prime}=\mathrm{R} \xi_{\tilde{A}} \mathrm{~S}=L_{\tilde{A}}^{\tilde{B}} \xi_{\tilde{B}}, \quad \psi^{\prime \tilde{B}}=\psi^{\tilde{A}} L_{\tilde{A}}^{\tilde{B}}
$$

The transformation from the left,

$$
\Phi^{\prime}=\mathrm{R} \Phi
$$

$$
\begin{aligned}
& \tilde{A} \equiv \alpha i \\
& \alpha=1,2,3,4 \\
& i=1,2,3,4
\end{aligned}
$$

reshuffles the components within each left ideal, whereas the transformation from the right,

$$
\Phi^{\prime}=\Phi S
$$

reshuffles the left ideals.

Passive transformations

$$
\begin{equation*}
\Phi^{\prime}=\psi^{,^{\tilde{A}}} \xi_{\tilde{A}}^{\prime}=\psi^{\tilde{A}} \xi_{\tilde{A}}=\Phi \tag{2}
\end{equation*}
$$

If the spinor basis transforms according to

$$
\begin{equation*}
\xi_{\tilde{A}}^{\prime}=\mathrm{R} \xi_{\tilde{A}} \mathrm{~S}=L_{\tilde{A}}^{\tilde{B}} \xi_{\tilde{B}} \tag{3}
\end{equation*}
$$

then the components must transform as

$$
\begin{equation*}
\psi^{\prime \tilde{A}}=\psi^{\tilde{B}}\left(L^{-1}\right)_{\tilde{B}}^{\tilde{A}} \tag{4}
\end{equation*}
$$

With respect to the new basis, $\xi_{\dot{A}}^{\prime}$, (new reference frame), the generalized spinor, Φ, has transformed components.

From (2) - (4) we obtain

$$
\psi^{\tilde{B}}\left(L^{-1}\right)_{\tilde{B}}^{\tilde{A}} \xi_{\tilde{A}}^{\prime}=\psi^{\tilde{B}} \mathrm{R}^{-1} \xi_{\tilde{B}}^{\prime} \mathrm{S}^{-1}=\psi^{\tilde{B}} \xi_{\tilde{B}}
$$

This is the active transformation of the object $\psi^{\tilde{B}} \xi_{\tilde{B}}$:

$$
\psi^{\tilde{B}} \xi_{\tilde{B}}^{\prime} \rightarrow \psi^{\tilde{B}} \xi_{\tilde{B}}=\psi^{\tilde{B}} \mathrm{R}^{-1} \xi_{\tilde{B}}^{\prime} \mathrm{S}^{-1}
$$

This is equivalent to the active transformation of the object $\psi^{\tilde{B}} \xi_{\dot{\tilde{B}}}$

$$
\psi^{\tilde{B}} \xi_{\tilde{B}} \rightarrow \psi^{\tilde{B}} \xi_{\tilde{B}}^{\prime}=\psi^{\tilde{B}} \mathrm{R} \xi_{\tilde{B}} \mathrm{~S}
$$

Behavior of spinors under Lorentz transformations

Rotated object

$$
a=0,1,2,3
$$

Let us consider the following transformation of the basis vectors

$$
\gamma_{a} \rightarrow \gamma_{a}^{\prime}=\mathrm{R} \gamma_{a} \mathrm{R}^{-1} \quad \left\lvert\, \begin{align*}
& \mathrm{R} \text { is a proper or improper } \tag{5}\\
& \text { Lorentz transformation }
\end{align*}\right.
$$

A generalized spinor, $\Phi \in C l(1,3)$, composed of γ_{a}, then transforms according to

$$
\Phi=\psi^{\tilde{A}} \xi_{\tilde{A}} \rightarrow \Phi^{\prime}=\psi^{\tilde{A}} \xi_{\tilde{A}}^{\prime}=\psi^{A} \mathrm{R} \xi_{B} \mathrm{R}^{-1}=\mathrm{R} \Phi \mathrm{R}^{-1}
$$

The transformation (5) of the basis vectors has for a consequence that the object Φ does not transform only from the right, but also from the left.

Piazzese 1993: Spinors cannot be interpreted as the minimal ideals of Clifford algebras

Behavior of spinors under Lorentz transformations

Rotated object

$$
a=0,1,2,3
$$

Let us consider the following transformation of the basis vectors

$$
\begin{equation*}
\gamma_{a} \rightarrow \gamma_{a}^{\prime}=\mathrm{R} \gamma_{a} \mathrm{R}_{\leftarrow}^{-1} \tag{5}
\end{equation*}
$$

R is a proper or improper Lorentz transformation

A generalized spinor, $\Phi \in C l(1,3)$, composed of γ_{a}, then transforms according to

$$
\Phi=\psi^{\tilde{A}} \xi_{\tilde{A}} \rightarrow \Phi^{\prime}=\psi^{\tilde{A}} \xi_{\tilde{A}}^{\prime}=\psi^{A} \mathrm{R} \xi_{B} \mathrm{R}^{-1}=\mathrm{R} \Phi \mathrm{R}^{-1}
$$

The transformation (2) of the basis vectors has for a consequence that the object Φ does not transform only from the right, but also from the left.

Piazzese 1993: Spinors cannot be interpreted as the minimal ideals of Clifford algebras
But: If the reference frame transforms as

$$
\gamma_{a} \rightarrow \gamma_{a}^{\prime}=\mathrm{R} \gamma_{a}
$$

then

$$
\Phi=\psi^{\tilde{A}} \xi_{\tilde{A}} \rightarrow \Phi^{\prime}=\psi^{\tilde{A}} \xi_{\tilde{A}}^{\prime}=\psi^{A} \mathrm{R} \xi_{B}=\mathrm{R} \Phi
$$

Transformation of a spinor

The ideal approach is OK

Usually, reference frames are "rotated" (Lorentz rotated) according to

$$
\gamma_{a} \rightarrow \gamma_{a}^{\prime}=\mathrm{R} \gamma_{a} \mathrm{R}^{-1}=L_{a}{ }^{b} \gamma_{b} \quad \begin{aligned}
& \text { A proper or improper } \\
& \text { Lorentz transformation }
\end{aligned}
$$

Therefore, a "rotated" observer sees (generalized) spinors transformed according to

$$
\Phi \rightarrow \Phi^{\prime}=\mathrm{R} \Phi \mathrm{R}^{-1}
$$

With respect to a new reference frame, the object

$$
\Phi=\psi^{\tilde{A}} \xi_{\tilde{A}}
$$

is expanded as

$$
\Phi=\psi^{\prime \tilde{A}} \xi_{\tilde{A}}^{\prime}
$$

where $\psi^{\prime \tilde{A}}=\psi^{\tilde{B}}\left(L^{-1}\right)_{\tilde{B}}^{\tilde{A}}$

$$
\begin{aligned}
& \tilde{A} \equiv \alpha i, \quad B \equiv \beta j \\
& \alpha, \beta=1,2,3,4 \\
& i, j=1,2,3,4
\end{aligned}
$$

The corresponding matrix $\psi^{\alpha i}$ transforms from the left and from the right.

If the observer, together with the reference frame, starts to rotate, then after having exhibited the $\varphi=2 \pi$ turn, he observes the same spinor Ψ, as he did at $\varphi=0$.

The sign of the spinor did not change.

If the observer, together with the reference frame, starts to rotate, then after having exhibited the $\varphi=2 \pi$ turn, he observes the same spinor Ψ, as he did at $\varphi=0$.
The sign of the spinor did not change.
This was a passive transformation. In the new reference frame the object was observed to be transformed according to $\Psi^{\prime}=\mathrm{R} \Psi \mathrm{R}^{-1}$.
There must also exist the corresponding active transformation, such that in a fixed reference frame the spinor Ψ transform as $\Psi^{\prime}=\mathrm{R} \Psi \mathrm{R}^{-1}$.

Examples

1) Rotation

$$
\begin{aligned}
\gamma_{0} \rightarrow \gamma_{0}, \quad \gamma_{1} \rightarrow \gamma_{1}, \quad \gamma_{2} & \rightarrow \gamma_{2} \cos \vartheta+\gamma_{3} \sin \vartheta \\
\gamma_{3} & \rightarrow-\gamma_{2} \sin \vartheta+\gamma_{3} \cos \vartheta
\end{aligned}
$$

Case $\vartheta=\pi: \gamma_{0} \rightarrow \gamma_{0}, \quad \gamma_{1} \rightarrow \gamma_{1}, \quad \gamma_{2} \rightarrow-\gamma_{2}, \quad \gamma_{3} \rightarrow-\gamma_{3}$

$$
\begin{aligned}
\theta_{1} & \rightarrow \bar{\theta}_{1}, \\
\theta_{2} & \rightarrow \bar{\theta}_{2} \\
\bar{\theta}_{1} & \rightarrow \theta_{1} \\
\bar{\theta}_{2} & \rightarrow \theta_{2}
\end{aligned}
$$ the $2^{\text {nd }}$ left ideal

A spinor of the first left ideal transforms as

A left handed spinor of the first ideal transforms into a left handed spinor of the second ideal.
Under the
rotation in the
plane, a generalized spinor

$$
\begin{aligned}
\Phi & =\left(\psi^{11} \underline{1}+\psi^{21} \theta_{1} \theta_{2}+\psi^{31} \theta_{1}+\psi^{41} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2} \\
& +\left(\psi^{12} \underline{1}+\psi^{22} \bar{\theta}_{1} \bar{\theta}_{2}+\psi^{32} \bar{\theta}_{1}+\psi^{42} \bar{\theta}_{2}\right) \theta_{1} \theta_{2} \\
& +\left(\psi^{13} \bar{\theta}_{1}+\psi^{23} \theta_{2}+\psi^{33} \underline{1}+\psi^{43} \bar{\theta}_{1} \theta_{2}\right) \theta_{1} \bar{\theta}_{2} \\
& +\left(\psi^{14} \theta_{1}+\psi^{24} \bar{\theta}_{2}+\psi^{34} \underline{1}+\psi^{44} \theta_{1} \bar{\theta}_{2}\right) \bar{\theta}_{1} \theta_{2}
\end{aligned}
$$

$$
\begin{aligned}
\Phi^{\prime} & =\left(\psi^{11} \underline{1}+\psi^{21} \bar{\theta}_{1} \bar{\theta}_{2}+\psi^{31} \bar{\theta}_{1}+\psi^{41} \bar{\theta}_{2}\right) \theta_{1} \theta_{2} \\
& +\left(\psi^{12} \underline{1}+\psi^{22} \theta_{1} \theta_{2}+\psi^{32} \theta_{1}+\psi^{42} \theta_{2}\right) \bar{\theta}_{1} \bar{\theta}_{2} \\
& +\left(\psi^{13} \theta_{1}+\psi^{23} \bar{\theta}_{2}+\psi^{33} \underline{1}+\psi^{43} \theta_{1} \bar{\theta}_{2}\right) \bar{\theta}_{1} \theta_{2} \\
& +\left(\psi^{14} \bar{\theta}_{1}+\psi^{24} \theta_{2}+\psi^{34} \underline{1}+\psi^{44} \bar{\theta}_{1} \theta_{2}\right) \theta_{1} \bar{\theta}_{2}
\end{aligned}
$$

The matrix of components
$\psi^{\alpha i}=\left(\begin{array}{llll}\left|\psi^{\overline{11}}\right| & \psi^{12} & \psi^{13} & \psi^{14} \\ \left|\psi^{21}\right| & \psi^{22} & \psi^{23} & \psi^{24} \\ \left|\psi^{31}\right| & \psi^{32} & \psi^{33} & \psi^{34} \\ \left|\psi^{41}\right| & \psi^{42} & \psi^{43} & \psi^{44}\end{array}\right)$
transforms into
$\psi^{\prime \alpha i}=\left(\begin{array}{c:ccc}\psi^{12} & \psi^{T 17} & \psi^{14} & \psi^{13} \\ \psi^{22} & \psi^{21} & \psi^{24} & \psi^{23} \\ \psi^{32} & \psi^{31} & \psi^{34} & \psi^{33} \\ \psi^{42} & \psi^{41} & \psi^{44} & \psi^{43}\end{array}\right)$

The spinor of the $1^{\text {st }}$ ideal transforms into the spinor of the $2^{\text {nd }}$ ideal

$\xi_{11}=\bar{\theta}_{1} \bar{\theta}_{2}$,	$\xi_{21}=\theta_{1} \theta_{2} \bar{\theta}_{1} \bar{\theta}_{2}$	spinor basis states of the $1^{\text {st }}$ left ideal
$\xi_{12}=\theta_{1} \theta_{2}$,	$\xi_{22}=\bar{\theta}_{1} \bar{\theta}_{2} \theta_{1} \theta_{2}$	spinor basis states of the $2^{\text {nd }}$ left ideal

Rotation

$$
\gamma_{0} \rightarrow \gamma_{0}, \quad \gamma_{1} \rightarrow \gamma_{1}, \quad \gamma_{2} \rightarrow-\gamma_{2}, \quad \gamma_{3} \rightarrow-\gamma_{3}
$$

gives

$$
\theta_{1} \rightarrow \bar{\theta}_{1}, \quad \theta_{2} \rightarrow \bar{\theta}_{2}, \quad \bar{\theta}_{1} \rightarrow \theta_{1}, \quad \bar{\theta}_{2} \rightarrow \theta_{2}
$$

Therefore, the spinor basis states transform as

$$
\begin{array}{ll}
\xi_{11} \rightarrow \xi_{12}, & \xi_{21} \rightarrow \xi_{22} \\
\xi_{12} \rightarrow \xi_{11}, & \xi_{22} \rightarrow \xi_{21}
\end{array}
$$

Under the $\vartheta=\pi$ rotation, the spin $1 / 2$ state of the $1^{\text {st }}$ ideal transforms into the spin $-1 / 2$ state of the $2^{\text {nd }}$ ideal, and vice versa.

They are eigenvalues of the spin operator $-\frac{l}{2} \gamma_{1} \gamma_{2}$

$$
-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{11}=\frac{1}{2} \xi_{11}, \quad-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{21}=-\frac{1}{2} \xi_{21}
$$

$$
-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{12}=-\frac{1}{2} \xi_{12}, \quad-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{22}=\frac{1}{2} \xi_{22}
$$

New basis states

$$
\begin{array}{ll}
\xi_{1 / 2}^{1}=\frac{1}{\sqrt{2}}\left(\xi_{11}+\xi_{22}\right), & \xi_{1 / 2}^{2}=\frac{1}{\sqrt{2}}\left(\xi_{11}-\xi_{22}\right) \\
\xi_{-1 / 2}^{1}=\frac{1}{\sqrt{2}}\left(\xi_{21}+\xi_{12}\right), & \xi_{-1 / 2}^{2}=\frac{1}{\sqrt{2}}\left(\xi_{21}-\xi_{12}\right)
\end{array}
$$

A superposition of the states of the $1^{\text {st }}$ and the $2^{\text {nd }}$ ideal

Under the rotation

$$
\gamma_{0} \rightarrow \gamma_{0}, \quad \gamma_{1} \rightarrow \gamma_{1}, \quad \gamma_{2} \rightarrow-\gamma_{2}, \quad \gamma_{3} \rightarrow-\gamma_{3}
$$

we have

$$
\begin{aligned}
& \xi_{1 / 2}^{1} \rightarrow \frac{1}{\sqrt{2}}\left(\xi_{12}+\xi_{21}\right)=\xi_{-1 / 2}^{1} \\
& \xi_{-1 / 2}^{1} \rightarrow \frac{1}{\sqrt{2}}\left(\xi_{22}+\xi_{11}\right)=\xi_{1 / 2}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{1 / 2}^{2} \rightarrow \frac{1}{\sqrt{2}}\left(\xi_{12}-\xi_{21}\right)=-\xi_{-1 / 2}^{2} \\
& \xi_{-1 / 2}^{2} \rightarrow \frac{1}{\sqrt{2}}\left(\xi_{22}-\xi_{11}\right)=-\xi_{1 / 2}^{2}
\end{aligned}
$$

$$
-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{ \pm 1 / 2}^{1}= \pm \frac{1}{2} \xi_{ \pm 1 / 2}^{1}
$$

$$
-\frac{i}{2} \gamma_{1} \gamma_{2} \xi_{ \pm 1 / 2}^{2}= \pm \frac{1}{2} \xi_{ \pm 1 / 2}^{2}
$$

These states have definite spin projection.
Under the $\vartheta=\pi$ rotation, the spin $1 / 2$ state transforms into the spin $-1 / 2$ state, and vice versa.
2) Space inversion

$$
\begin{aligned}
& \gamma_{0} \rightarrow \gamma_{0}^{\prime}=\gamma_{0}, \quad \gamma_{r} \rightarrow \gamma_{r}^{\prime}=-\gamma_{r}, \quad r=1,2,3 \\
& \theta_{1} \rightarrow \frac{1}{2}\left(\gamma_{0}-\gamma_{3}\right)=\bar{\theta}_{1} \\
& \theta_{2} \rightarrow \frac{1}{2}\left(-\gamma_{1}-i \gamma_{2}\right)=-\theta_{2} \\
& \overline{\theta_{1}} \rightarrow \frac{1}{2}\left(\gamma_{0}+\gamma_{3}\right)=\theta_{1} \\
& \bar{\theta}_{2} \rightarrow \frac{1}{2}\left(-\gamma_{1}+i \gamma_{2}\right)=-\bar{\theta}_{2}
\end{aligned}
$$

This is a spinor of the $3^{\text {rd }}$ left ideal

A spinor of the first left ideal transforms as

$$
(\underbrace{\psi^{11} \underline{1}+\psi^{21} \theta_{1} \theta_{2}}_{L}+\underbrace{\psi^{31} \theta_{1}+\psi^{41} \theta_{2}}_{R}) \bar{\theta}_{1} \bar{\theta}_{2} \rightarrow(\underbrace{-\psi^{11} 1+\psi^{21} \bar{\theta}_{1} \theta_{2}}_{R}-\underbrace{\psi^{31} \bar{\theta}_{1}+\psi^{41} \theta_{2}}_{L}) \theta_{1} \bar{\theta}_{2}
$$

A left handed spinor of the first ideal transforms into a right handed spinor of the third ideal.

In general, under space inversion, the matrix of the spinor basis elements
$\xi_{\alpha i}=\left(\begin{array}{cccc}f_{1} & f_{2} & \bar{\theta}_{1} f_{3} & \theta_{1} f_{4} \\ \theta_{1} \theta_{2} f_{1} & \overline{\theta_{1}} \bar{\theta}_{2} f_{2} & \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} \\ \theta_{1} f_{1} & \bar{\theta}_{1} f_{2} & f_{3} & f_{4} \\ \theta_{2} f_{1} & \bar{\theta}_{2} f_{2} & \bar{\theta}_{1} \theta_{2} f_{3} & \theta_{1} \bar{\theta}_{2} f_{4}\end{array}\right)$
transforms into
$\xi_{\alpha i}^{\prime}=\left(\begin{array}{cccc}-f_{3} & -f_{4} & -\theta_{1} f_{1} & -\bar{\theta}_{1} f_{2} \\ \bar{\theta}_{1} \theta_{2} f_{3} & \theta_{1} \bar{\theta}_{2} f_{4} & \theta_{2} f_{1} & \bar{\theta}_{2} f_{2} \\ -\bar{\theta}_{1} f_{3} & -\theta_{1} f_{4} & -f_{1} & -f_{2} \\ \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} & \theta_{1} \theta_{2} f_{1} & \bar{\theta}_{1} \bar{\theta}_{2} f_{2}\end{array}\right)$

The matrix of components
$\psi^{\alpha i}=\left(\begin{array}{llll}\psi^{11} & \psi^{12} & \psi^{13} & \psi^{14} \\ \psi^{21} & \psi^{22} & \psi^{23} & \psi^{24} \\ \psi^{31} & \psi^{32} & \psi^{33} & \psi^{34} \\ \psi^{41} & \psi^{42} & \psi^{43} & \psi^{44}\end{array}\right)$
$\psi^{\alpha i}=\left(\begin{array}{cccc}-\psi^{33} & -\psi^{34} & -\psi^{31} & -\psi^{32} \\ \psi^{43} & \psi^{44} & \psi^{41} & \psi^{42} \\ -\psi^{13} & -\psi^{14} & -\psi^{11} & -\psi^{12} \\ \psi^{23} & \psi^{24} & \psi^{21} & \psi^{22}\end{array}\right)$

In general, under space inversion, the matrix of the spinor basis elements
$\xi_{\alpha i}=\left(\begin{array}{cccc}f_{1} & f_{2} & \bar{\theta}_{1} f_{3} & \theta_{1} f_{4} \\ \theta_{1} \theta_{2} f_{1} & \overline{\theta_{1}} \bar{\theta}_{2} f_{2} & \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} \\ \theta_{1} f_{1} & \bar{\theta}_{1} f_{2} & f_{3} & f_{4} \\ \theta_{2} f_{1} & \bar{\theta}_{2} f_{2} & \bar{\theta}_{1} \theta_{2} f_{3} & \theta_{1} \bar{\theta}_{2} f_{4}\end{array}\right)$
transforms into
$\xi_{\alpha i}^{\prime}=\left(\begin{array}{cccc}-f_{3} & -f_{4} & -\theta_{1} f_{1} & -\bar{\theta}_{1} f_{2} \\ \bar{\theta}_{1} \theta_{2} f_{3} & \bar{\theta}_{1} \bar{\theta}_{2} f_{4} & \theta_{2} f_{1} & \bar{\theta}_{2} f_{2} \\ -\bar{\theta}_{1} f_{3} & -\theta_{1} f_{4} & -f_{1} & -f_{2} \\ \theta_{2} f_{3} & \bar{\theta}_{2} f_{4} & \theta_{1} \theta_{2} f_{1} & \bar{\theta}_{1} \bar{\theta}_{2} f_{2}\end{array}\right)$

The matrix of components

The spinor of the $1^{\text {st }}$ ideal transforms into the spinor of the $3^{\text {rd }}$ ideal

Generalized Dirac equation (Dirac-Kähler equation ${ }^{1}$)

Gauge invariant action:

$$
\begin{array}{r}
I=\int \mathrm{d}^{4} x \bar{\psi}^{i}\left(i \gamma^{\mu} \mathrm{D}_{\mu}-m\right) \psi^{j} z_{i j} \\
D_{\mu} \psi^{i}=\partial_{\mu} \psi^{i}+G_{\mu}{ }_{j}{ }_{j} \psi^{j}
\end{array}
$$

This action contains the ordinary particles and mirror particles.

Gauge covariant action:

$$
\begin{array}{r}
I=\int \mathrm{d}^{4} x \bar{\psi}^{i}\left(i \gamma^{\mu} \mathrm{D}_{\mu}-m\right) \psi^{j} z_{i j} \\
D_{\mu} \psi^{i}=\partial_{\mu} \psi^{i}+G_{\mu}{ }^{i} \psi^{j}
\end{array}
$$

This action contains the ordinary particles and mirror particles.

This index is omitted

$$
\psi^{\alpha i} \equiv \psi^{i}=
$$

The $\operatorname{SU}(2)$ gauge group acting within the $1^{\text {st }}$ and $2^{\text {nd }}$

The $\operatorname{SU}(2)$ gauge group acting within the $3^{\text {rd }}$ and $4^{\text {th }}$ kinds of weak erpreted as The corresponding two kinds of weak ction gauge
interaction gauge fields that can be transformed into each other by space particles. inversion are contained in $G_{\mu j}{ }^{i}$.

Mirror particles were first proposed by Lee and Yang, Phys. Rev. 104 (1956) 254
Subsequently, the idea of mirror particles has been pursued by
I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Soviet J. Nucl. Phys. 5 (1966) 837.
M. Pavšič, Int. J. Theor. Phys. 9 (1974) 229.
E.W. Kolb, D. Seckel, M.S. Turner, Nature 314 (1985) 415
R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272 (1991) 67;
R. Foot, H. Lew, R.R. Volkas, Mod. Phys. Lett. A 7 (1992) 2567;
R. Foot, Mod. Phys. Lett. 9 (1994) 169;
R. Foot, R.R. Volkas, Phys. Rev. D 52 (1995) 6595.

The possibility that mirror particles are responsible for dark matter has been explored in many works, e.g.:
H. M. Hodges, Phys. Rev. D 47 (1993) 456;
R. Foot, Phys. Lett. B 452 (1999) 83;
R. Foot, Phys. Lett. B 471 (1999) 191;
R.N. Mohapatra, Phys. Rev. D 62 (2000) 063506;
Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503 (2001).

Mirror particles were first proposed by Lee and Yang, Phys. Rev. 104 (1956) 254
Subsequently, the idea of mirror particles has been pursued by
I.Yu. Kobzarev, L.B. Okun, I.Ya. Pomeranchuk, Soviet J. Nucl. Phys. 5 (1966) 837.
M. Pavšič, Int. J. Theor. Phys. 9 (1974) 229.
E.W. Kolb, D. Seckel, M.S. Turner, Nature 314 (1985) 415
R. Foot, H. Lew, R.R. Volkas, Phys. Lett. B 272 (1991) 67;
R. Foot, H. Lew, R.R. Volkas, Mod. Phys. Lett. A 7 (1992) 2567;
R. Foot, Mod. Phys. Lett. 9 (1994) 169;
R. Foot, R.R. Volkas, Phys. Rev. D 52 (1995) 6595.

The possibility that mirror particles are responsible for dark matter has been explored in many works, e.g.:
H. M. Hodges, Phys. Rev. D 47 (1993) 456;
R. Foot, Phys. Lett. B 452 (1999) 83;
R. Foot, Phys. Lett. B 471 (1999) 191;
R.N. Mohapatra, Phys. Rev. D 62 (2000) 063506;
Z. Berezhiani, D. Comelli, F. Villante, Phys. Lett. B 503 (2001).

A demonstration that mirror particles can be explained in terms of algebraic spinors (elements of Clifford algebras) was presented in
M. Pavšič, Phys. Lett. B 692 (2010) 212.

Clifford algebras and the concept of algebraic spinors opens Pandora's box of possibilities that have been explored in the attempts to find a unified theory of fundamental particles and forces.
See, e.g.,
M. Pavšič: The Landscape of Theoretical Physics: A Global view;

From Point Particles to the Brane World and Beyond, in Search of a Unifying Principle (Kluwer Academic, 2001)
Class. Quant. Grav. 20, 2697-2714 (2003); gr-qc/0111092
Kaluza-Klein theory without extra dimensions: Curved Clifford space,
Phys. Lett. B614, 85-95 (2005); hep-th/0412255
Spin gauge theory of gravity in Clifford space: A Realization of Kaluza-Klein theory in 4- dimensional spacetime, Int. J. Mod. Phys. A21, 5905-5956 (2006); gr-qc/0507053
Beyond the relativistic point particle: A reciprocally invariant system, Phys. Lett. B 680, 526-532 (2009)

A Novel View on the Physical Origin of E8, J. Phys. A 41 (2008) 332001; 0806.4365 [hep-th]

On the relativity in configurations space: A renewed physics in sight, 0912.3669 [gr-qc]

Other authors: Hestenes, Smith, Trayling, Baylis, Roepstorff, Chisholm, Crawford, Castro, Schmeikel

Conclusion

Normally, our measuring tools (and reference frames) rotate as vectors:
Then any other Clifford number, Φ, also transforms as
This means that spinors, since being embedded in Φ, transform in the same way.
According to Piazzese, such behavior of spinors under rotations is an argument against spinors as members of minimal ideals of a Clifford algebra, because spinors must transform as $\Psi^{\prime}=\mathrm{R} \Psi$.

But if we take into account the transformations within the entire Clifford algebra, then any Clifford number can transform as $\Phi^{\prime}=\mathrm{R} \Phi \mathrm{S}$, and so can a spinor. In particular, if $\mathrm{S}=1$, then we have the usual transformation of spinors.

When our reference frame undergoes a space inversion, then a spinor of one minimal ideal transforms into a spinor of another minimal ideal of Clifford algebra.

We have pointed out how the enigmatic properties of weak interactions under space inversion can be understood in terms of geometric (algebraic) spinors.

Auxiliary slides

Not presented in this talk. Intended for discussion only.

Finite dimensional description of extended objects

The Earth has a huge (practically infinite) number of degree of freedom. And yet, when describing the motion of the Earth around the Sun, we neglect them all, except for the coordinates of the centre of mass.

Instead of infinitely many degrees of freedom associated with an extended object, we may consider a finite number of degrees of freedom.

Strings and branes have infinitely many degrees of freedom.
But at first approximation we can consider just the centre of mass.

Next approximation is in considering the holographic coordinates of the oriented area enclosed by the string.

We may go further and search for eventual thickness of the object.
If the string has finite thickness, i.e., if actually it is not a string, but a 2-brane, then there exist the corresponding volume degrees of freedom.

In general, for an extended object in M_{4}, we have 16 coordinates

$$
x^{M} \equiv x^{\mu_{1} \ldots \mu_{r}}, \quad r=0,1,2,3,4
$$

They are the projections of r-dimensional volumes (areas) onto the coordinate planes.
Oriented r-volumes can be elegantly described by Clifford algebra.

$$
\mathrm{d} \Sigma=\mathrm{d} \xi_{1} \wedge \mathrm{~d} \xi_{2}=\mathrm{d} \xi_{1}^{a} \mathrm{~d} \xi_{2}^{b} e_{a} \wedge e_{b}=\frac{1}{2} \mathrm{~d} \xi^{a b} e_{a} \wedge e_{b}
$$

$$
\begin{aligned}
& \mathrm{d} \xi^{a b}=\mathrm{d} \xi_{1}^{a} \mathrm{~d} \xi_{2}^{b}-\mathrm{d} \xi_{2}^{a} \mathrm{~d} \xi_{1}^{b} \\
& e_{a}=\partial_{a} X^{\mu} \gamma_{\mu}
\end{aligned}
$$

$$
\begin{aligned}
\int_{\Sigma_{B}} \mathrm{~d} \Sigma \equiv \frac{1}{2} X^{\mu \nu} \gamma_{\mu} \wedge \gamma_{v} & =\frac{1}{2} \int_{\Sigma_{B}} \mathrm{~d} \xi^{a b} \partial_{a} X^{\mu} \partial_{b} X^{v} \gamma_{\mu} \wedge \gamma_{v} \\
& =\frac{1}{2} \int_{\Sigma_{B}} \mathrm{~d} \xi^{a b} \frac{1}{2}\left(\partial_{a} X^{\mu} \partial_{b} X^{\nu}-p_{a} X^{\nu} \partial_{b} X^{\mu}\right) \gamma_{\mu} \wedge \gamma_{\nu}
\end{aligned}
$$

$X^{\mu \nu}[B]=\frac{1}{2} \int_{\Sigma_{B}} \mathrm{~d} \xi^{a b}\left(\partial_{a} X^{\mu} \partial_{b} X^{\nu}-\partial_{a} X^{\nu} \partial_{b} X^{\mu}\right)$

$$
X^{\mu \nu}[B]=\frac{1}{2} \oint_{B} \mathrm{~d} s\left(X^{\mu} \frac{\partial X^{\nu}}{\partial s}-X^{\nu} \frac{\partial X^{\mu}}{\partial s}\right)
$$

Mapping :

$$
X^{\mu}\left(\xi^{a}\right) \longrightarrow X^{\mu \nu}
$$

Instead of the usual relativity formulated in spacetime in which the interval is

$$
\mathrm{d} s^{2}=\eta_{\mu \nu} \mathrm{d} x^{\mu} \mathrm{d} x^{\nu}
$$

we are studying the theory in which the interval is extended to the space of r-volumes (called Clifford space):

$$
\mathrm{d} S^{2}=G_{M N} \mathrm{~d} x^{M} \mathrm{~d} x^{N} \quad \mathrm{~d} x^{M} \equiv \mathrm{~d} x^{\mu_{1} \ldots \mu_{r}}, \quad r=0,1,2,3,4
$$

Coordinates of Clifford space can be used to model extended objects. They are a generalization of the concept of center of mass.
Instead of describing extended objects in "full detail", we can describe them in terms of the center of mass, area and volume coordinates
In particular, extended objects can be fundamental strings or branes.

Quadratic form in C-space

$$
\mathrm{d} S^{2} \equiv|\mathrm{~d} X|^{2} \equiv \mathrm{~d} X^{\ddagger} * \mathrm{~d} X=\mathrm{d} x^{M} \mathrm{~d} x^{N} G_{M N} \equiv \mathrm{~d} x^{M} \mathrm{~d} x_{M}
$$

where

$$
\mathrm{d} X=\mathrm{d} x^{M} \gamma_{M} \equiv \mathrm{~d} x^{\mu_{1} \mu_{2} \ldots \mu_{r}} \gamma_{\mu_{1} \mu_{2} \ldots \mu_{r}}, \quad r=0,1,2,3,4
$$

Metric

$$
G_{M N}=\gamma_{M}^{\ddagger} * \gamma_{N} \equiv\left\langle\gamma_{M}^{\ddagger} \gamma_{N}\right\rangle_{0} \quad\left(\gamma_{\mu_{1}} \gamma_{\mu_{2}} \cdots \gamma_{\mu_{r}}\right)^{\ddagger}=\gamma_{\mu_{r}} \cdots \gamma_{\mu_{2}} \gamma_{\mu_{1}}
$$

Reversion

Signature:

$$
\begin{equation*}
++++++++-------- \tag{8,8}
\end{equation*}
$$

In flat C-space:

$$
\gamma_{\mu_{1} \mu_{2} \ldots \mu_{r}}=\gamma_{\mu_{1}} \wedge \gamma_{\mu_{2}} \wedge \ldots \wedge \gamma_{\mu_{r}}
$$

at every point $\mathcal{E} \in C$

Dynamics

Action:

$$
I=\int d \tau\left(\eta_{M N} \dot{X}^{M} \dot{X}^{N}\right)^{1 / 2}
$$

Generalization of ordinary relativity

Equations of motion:

$$
\ddot{X}^{M} \equiv \frac{\mathrm{~d}^{2} X^{M}}{\mathrm{~d} \tau^{2}}=0
$$

These equations imply area (volume) motion

Metric:

$$
\eta_{M N}
$$

Diagonal metric

Signature:

$$
\begin{equation*}
++++++++-------- \tag{8,8}
\end{equation*}
$$

The above dynamics holds for tensionless branes.
For the branes with tension one has to introduce curved Clifford space.

Thick point particles and strings

A world line in C represents the evolution of a 'thick' particle in spacetime

Thick particle can be an aggregate p-branes for various $p=0,1,2, \ldots$

But such interpretation is not obligatory.

A world line in C represents the evolution of a 'thick' particle in spacetime M_{4}

Thick particle can be an aggregate p-branes for various $p=0,1,2, \ldots$

But such interpretation is not obligatory.

Thick particle may be a conglomerate of whatever extended objects that can be sampled by polyvector coordinates
$X^{M} \equiv X^{\mu_{1} \mu_{2} \ldots \mu_{\mu}}$

A world sheet in C represents the evolution of a `thick' string in spacetime

Thick string can be an aggregate p-branes for various $p=0,1,2, \ldots$

But such interpretation is not obligatory.

Thick string may be a conglomerate of whatever extended objects that can be sampled by polyvector coordinates
$X^{M} \equiv X^{\mu_{1} \mu_{2} \ldots \mu_{\psi_{4}}}$

$$
X_{C}^{\mu}(\tau, \sigma)
$$

Usual strings are infinitely thin object. Although called `extended objects', they are not fully extended.
Instead of infinitely thin strings we thus consider thick strings.
Their thickness is encoded in polyvector coordinates $X^{M} \equiv X^{\mu_{\mu} \mu_{2} \ldots \mu_{\nu}}$.

String action

$$
I=\frac{\kappa}{2} \int \mathrm{~d} \tau \mathrm{~d} \sigma\left(\dot{X}^{M} \dot{X}^{N}-X^{\prime M} X^{\prime N}\right) G_{M N}
$$

Conformal gauge

The necessary extra dimensions for consistency of string theory are in 16-dimensional Clifford space.

Jackiw-Kim-Noz definition of vacuum
No central terms in the Virasoro algebra, if the space in which the string lives has signature $(+++\ldots---)$

The space in which out string lives is Clifford space. Its dimension is 16 , and signature $(8,8)$.

Infinitely thin strings are singular objects

No extra dimensions of the spacetime are required

Usual strings are infinitely thin object. Although called `extended objects', they are not fully extended.
Instead of infinitely thin strings we thus consider thick strings.
Their thickness is encoded in polyvector coordinates $X^{M} \equiv X^{\mu_{1} \mu_{2} \ldots \mu_{\nu}}$.

String action

$$
I=\frac{\kappa}{2} \int \mathrm{~d} \tau \mathrm{~d} \sigma\left(\dot{X}^{M} \dot{X}^{N}-X^{\prime M} X^{\prime N}\right) G_{M N}
$$

Infinitely thin strings are singular objects
$I=\frac{\kappa}{2} \int \mathrm{~d} \tau \mathrm{~d} \sigma\left(\dot{X}^{M} \dot{X}^{N}-X^{\prime M} X^{\prime N}\right) G_{M N} \quad$ Conformal gauge

The necessary extra are in 16-dimension Jackiw-Kim-Noz defii	$X^{M}=\left(x, x^{\mu}, x^{\mu \nu}, \ldots\right)$
No central terms in	

