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Space-times models with dust and radiation

Tij = Λgij + ρuiuj + εlilj,

gijuiuj = 1, gijlilj = 0, i, j = 1, ...n

signature is (+,−,−,−)

Λ – cosmological constant,

ρ – mass density of dust matter,

ui – velocity of dust matter,

ε – energy density of radiation,

li – wave vector of radiation.

Equation of test particle in Hamilton-Jacobi form

gijS,iS,j = m2 i, j = 1, ...n



STÄCKEL SPACES

Definition 1 Let Vn be a n–dimensional Rie-

mannian space with metric tensor gij. The

Hamilton – Jacobi equation

gijS,iS,j = m2 i, j = 1, ...n (1.1)

can be integrated by complete separation of

variables method if co-ordinate set {ui} exists

for which complete integral can be presented

in the form:

S =
n∑
i=1

φi(u
i, λ) (1.2)

where λ1...λn – is the essential parameter.

Definition 2 Vn is called the Stäckel space if

the Hamilton–Jacobi equation (1.1) can be in-

tegrated by complete separation of variables

method.



Theorem 1 Let Vn be the Stäckel space. Then

gij in privileged co-ordinate set can be shown

in the form

gij =
∑
ν

(Φ−1)νnG
ij
ν ,

Gijν = Gijν (uν), Φν
µ = Φν

µ(uµ), (2.1)

Gijν = δiνδ
j
νεν(uν)+

∑
p

(δiνδ
j
p+δjνδ

i
p)G

νp
ν +

∑
p,q
δipδ

j
qG

pq
ν ,

(no summation over ν)

i, j = 1, ...n, p, q = 1, ...N, ν, µ = N + 1, ...n.

1 ≤ N < n

where Φν
µ(uµ) – is called the Stäckel matrix.



Geodesic equations of Stäckel spaces admit
the first integrals that commutes pairwise
with respect to the Poisson bracket

X
µ

= (Φ−1)νµ(ενp
2
ν + 2Gνpν pppν + hpqν pppq),

Y
p

= Y
p
ipi, (2.2)

p, q = 1, ...N ; ν, µ = N + 1, ..., n.

Φν
µ(uµ) – is called the Stäckel matrix,

functions εν, Gνpν , hpqν depends only from uν,
pi – momentum.

If we write the functions Xν, Yp in the form:

X
ν

= X
ν
ijpipj, Y

p
= Y

p
ipi (2.3)

then

X
ν (ij;k) = Y

p (i;j) = 0

(the semicolon denotes the covariant deriva-
tive and the brackets denote symmetrization).
Therefore Yp i, Xν ij are the components of
vector and tensor Killing fields respectively.



Definition 3 Pairwais commuting Killing vec-

tors Yp i, where p = 1, ...N and Killing tensors

Xν ij, where ν = N + 1, ...n form a so called

complete set of the type (N.N0), where

N0 = N − rank||Y
p
i
Y
q i||

Theorem 2 A necessary and sufficient geo-

metrical criterion of a Stäckel space is the pres-

ence of a complete set of the type (N.N0).

Then the Hamilton - Jacobi equation can be

integrated by the complete separation of vari-

ables method if and only if the complete set of

the first integrals exists.

Definition 4 Space - time is called the Stäckel

one of the type (N.N0) if the complete set of

the type (N.N0) exists.



Let us consider the Hamilton–Jacobi equation

for the charged particle

gij(S,i +Ai)(S,j +Aj) = m2. (2.8)

Theorem 3 If eq.(2.8) admits complete sepa-

rations of variables then gij is the metric tensor

of the Stäckel space type (N.N0).

Using this theorem one can show that the sep-

aration takes place for the same privileged co-

ordinate set and

Ai = (Φ−1)νnh
i
ν(uν), AiA

i = (Φ−1)νnhν(uν).

(2.9)

The last condition can be regarded as an additional

functional equation.

Stäckel space-time is called the special one if

(2.8) admits complete separation of variables.



Separation of variables for

the Klein – Gordon – Fock equation.

Let us consider the Klein–Gordon–Fock equa-

tion for the Riemannian space.

(Ĥ −m2)ψ ≡ [−gkl∇k∇l −m2]ψ = 0 (3.1)

∇i - is covariant derivative, ψ – scalar function.

Definition 5 Eq.(3.1) admits complete sepa-

ration of variables if co-ordinate set {ui} exists

for which the complete solution can be pre-

sented in the form

ψ =
n∏
i=1

φi(u
i, λ), det||

∂2ψ

∂ui∂λj
|| 6= 0. (3.2)



Theorem 4 Let Klein–Gordon–Fock equation

admits complete separation of variables. Then

gij is a metric tensor of a Stäckel space. More-

over the separation of variables takes place at

the same privileged co - ordinate set.

It was proved that in the special Stäckel elec-

trovac spacetimes Klein–Gordon–Fock equa-

tion can be integrated by the complete sep-

aration of variables method.

(Recall that Stäckel space - time is called the

special one if HJ-equation with Ai admits com-

plete separation of variables)



Stäckel spaces and

field equations of the theories of gravity.

The metrics of the Stäckel spaces can be used

for integrating the field equations of General

Relativity and other metric theories of Gravity.

Note that such famous GR exact solutions as

Schwarcshild, Kerr, NUT, Friedman belong to

the class of Stäckel spaces.

At the moment all Stäckel spaces satisfying the

Einstein–Maxwell equations have been found

in our papers (Bagrov, Obukhov, Shapovalov,

Osetrin) .



Classification of Stackel space-times for the

following theories have been considered in our

papers:

1. Brans–Dicke scalar-tensor theory. The field

equations have the form

Rij −
1

2
gijR =

8π

φ
Tij −

ω

φ2
(φ;iφ;j −

−
1

2
gijφ;kφ

;k)−
1

φ
(φ;ij − gij2φ) (5.1)

2φ =
8π

3 + 2ω
T ii, 2 = gij∇i∇j, ω = const.

2. The classification problem for the Einstein–

Vaidya equations when the stress–energy

tensor have the form:

Tij = a(x) lilj, lil
i = 0 (5.2)



Conformally Stäckel spaces.

Let us consider the Hamilton–Jacobi equation

for a massless particle

gijS,iS,j = 0 (6.1)

Obviously this equation admits complete sep-

aration of variables for a Stäckel space. Yet

one can verify that if gij has the form

gij = g̃ij(x) exp 2ω(x) (6.2)

where g̃ij is a metric tensor of the Stäckel

space, then eq.(6.1) can be solved by complete

separation of variables method too.



Note that conformally Stäckel spaces play im-
portant role when massless quantum equations
are considered (f.e. conformal invariant
Chernikov–Penrose equation, Weyl’s equation
etc.).

The problem of classification of conformally
Stäckel spaces satisfying the Einstein equation

Rij = Λgij, Λ = const (6.3)

gij = g̃ij(x) exp 2ω(x)

is more difficult than appropriate problem for
the Stäckel spaces.

We obtained the following form of integrability
conditions:

∇̃δ
(
C̃δαβγ exp (n− 3)ω

)
= 0. (6.4)

If dimension of the space Vn equals to 4, eq. (6.4)
has the form

∇̃δ
(
C̃δαβγ expω

)
= 0. (6.5)



Using integrability conditions we have proved

the following theorem

Theorem 5 Let gij be the metric tensor of the

Stäckel space of type (N.1). Then Einstein

space conformal to Ṽ4 admits the same Killing

vectors as V4.

Moreover one can prove the following state-

ment.

Theorem 6 Let Ṽn is conformally Stäckel space

of type (N.1) (N ≥ 2) satisfying the Einstein

equation (6.3). Then Hamilton–Jacobi equa-

tion (1.1) admits the complete separation of

variables.

In other words nontrivial null conformally Stäckel

solutions of the Einstein equations belong only

to (1.1)-type Stackel spaces.



HOMOGENEOUS STÄCKEL SPACES

Let us consider the problem of classification
of space-homogeneous models of space-times
which admit a complete separation of variables
in Hamilton-Jacobi equation.

The most interesting models for cosmology are
space-homogeneous models, which admit a 3-
parametrical transitive group of motions with
space-like orbits.

On the other hand, the Stäckel space (N.N0)
type admit N Killing vectors.

Thus, there is a problem of finding a subclass
of homogeneous space-times admitting com-
plete sets of integrals of motion.

In other words, a space-time with a complete
set must admit a 3-parametrical transitive group
of motions with space-like orbits.



Let us consider Stackel space of type (3.1).

This type of Stackel space-times is rather in-

teresting in this context, because its metric

depend only on such variable of privileged co-

ordinate set, which corresponds to null (wave)

hypersurface of the Einstein equation.

In other words, the Stackel space-times of this

type are common to spaces filled of radiation

(gravitational, electromagnetic etc.).

In a privileged coordinate set metric of (3.1)

type has the form

gij =


0 1 b2(x0) b3(x0)
1 0 0 0

b2(x0) 0 a22(x0) a23(x0)
b3(x0) 0 a23(x0) a33(x0)

 ,
where x0 is the wave-like null variable.



Space admit 3 commuting Killing vectors

X1, X2, X3; [Xp, Xq] = 0, p, q, r = 1,2,3

with components

Xp
i = δip.

The metric projection on orbits of this group
of motions is degenerated. Thus, we need an
additional Killing vector

Xi
4 = ξi.

The commutative relations of group X1 — X4

have the form

[Xm, X4] = αmX4 + βmnXn
[X1, X4] = α1X4 + β1

pXp, p, q = 1,2,3
[Xp, Xq] = 0

The Jacobi identities for the structure con-
stants have the form

β1
1αm = 0

α2β3
n = α3β2

n

αmβ1
n = α1βm

n



Classification of obtained solution by Bianchi:

Stäckel spaces (3.1)
1 2 3 4 5 6 7

I + + +
II +

VII0 +
VI0 + + +
VIII
IX

V + + + +
IV +

VIIa +
III + + + +

VIa + + +

Metrics of Bianchi types VIII and IX are absent.



Example of Application
of obtained metrics for radiation.

Einstein-Vaidya equations have the form:

Rαβ = q2(x) lαlβ, lαl
α = 0,

where q(x) – energy density of radiation,
lα – wave vector.

This is easy to see that the obtained metrics
satisfy field equations at the only condition for
the energy density of radiation. For all our
metrics we have

(ql)2 =
k1

(x0)2
+ k2,

where k1 and k2 are constants. For type A
metrics we have k2 = 0 and for type B metrics
k1 = 0.

The obtained solution represents an analogue
of spherical wave (for k2 = 0) or an analogue
of homogeneous radiation (for k1 = 0) for 7
types of homogeneous spaces (and 9 type of
cosmological models by Bianchi classification).



Conformally-flat Stackel space-times

As a simple generalization of flat space-time,

including the famous cosmological model as

Friedmann-Robertson-Walker, De Sitter space-

times, we can consider a conformally–flat space.

Then the first step of classification – selection

of conformally–flat metrics by condition:

Cijkl = 0,

where Cijkl - Weyl tensor.



Stackel metric of type (2.0)

(coordinate set, allowing separation of variables)

Stackel metric of type (2.0) in a privileged co-

ordinate set can be reduced to the following

convenient form:

gij =
1

∆


A B 0 0
B C 0 0
0 0 1 0
0 0 0 ε


where

A = a2(x2) + a3(x3), B = b2(x2) + b3(x3),

C = c2(x2)+c3(x3), ε = ±1, ∆ = τ2(x2)+τ3(x3)



Classes of conformally–flat metrics (2.0) type:

gij =
1

∆


A B 0 0
B C 0 0
0 0 1 0
0 0 0 ε


Various cases of dependence of functions A,B,C,
taking into account the coordinate transforma-
tion, lead to the existence of four classes of
solutions:

1. C = 0, A 6= 0.

2. B = 0.

3. A = λC, BC 6= 0, λ 6= 0, B 6= κC.

4. B = λA+µC, λµ > 1
4, AC 6= 0, A 6= κC.

where λ, µ and κ are constants.



Conformally–flat Stackel metrics (2.0) type

(coordinate set, allowing separation of variables)

gij =
1

∆


A B 0 0
B C 0 0
0 0 1 0
0 0 0 ε

 ,

1. The case C = 0, ε = 1:

(1.1)A = α(x22
+ x32

) + βx2 + γx3, B = 1,

(1.2)A = ε1e
2αx2

, B = eαx
2
,

(1.3)A = ε1(x24 − x34
), B = x22

+ x32
,

(1.4)A = ε1(cos 2x2+ch 2x3), B = sinx2+ε2ch x3,

ε1, ε2 = ±1

Small Greek letters denote a constants.



Conformally–flat Stackel metrics (2.0) type
(coordinate set, allowing separation of variables)

gij =
1

∆


A B 0 0
B C 0 0
0 0 1 0
0 0 0 ε

 ,

2. The case B = 0:

(2.1) A =
βc2 + δ

αc2 + γ
+

βc3 − δ
−αc3 + γ

, ε = ±1

where function cµ satisfies:

c′2
2

=
1

2
(αc2 + γ)(κc2

2 + λc2 + µ),

c′3
2

=
1

2
ε(αc3 − γ)(κc3

2 − λc3 + µ).

(2.2) A = 1/x22
, C = −ε/x32

(2.3) A = 1/ sin2 x2, C = −ε/ sin2
ε x

3

sinε x =

{
sinx, ε = −1
sh x, ε = 1



Solutions with dust and cosmological constant

(coordinate set, allowing separation of variables)

Rij −
1

2
Rgij = Λgij + ρuiuj, gijuiuj = 1

1.

dS2 = C

(
1

A
dx02

+
1

C
dx12

+ dx22
+ dx32

)
,

where C = c2 + c3, A > 0, C < 0,

A =
βc2 + δ

αc2 + γ
+

βc3 − δ
−αc3 + γ

,

where c2, c3 are solution of

c′2
2

=
1

2
(αc2 + γ)(κc2

2 + λc2 + µ),

c′3
2

=
1

2
ε(αc3 − γ)(κc3

2 − λc3 + µ).

Mass density and 4-velosity of dust:

ui = (0,1,0,0), ρ = 2Λ, αβ = 8Λ.

x1 is a time variable.



Solutions with dust and cosmological constant

(coordinate set, allowing separation of variables)

2.

dS2 = a2
(
−
αC + β

C
dx02 −

1

C
dx12 − dx22

)
+dx32

where a = a(x3), C = C(x2), C > 0 and

C′2 = γC2(αC + β).

Mass density and 4-velosity of dust:

ui = (0,0,0, a), ρ =
µ

a3
,

a′2 =
βγ

4
+

Λa2

3
+

µ

3a
,

a′′ =
Λa

3
−

µ

3a2
.

x3 is a time variable.



Conclusion

For dust and radiation models we suggest a

method for obtaining analytical solutions in any

metric theories of gravity based on the use of

coordinate systems that admit separation of

variables in the Hamilton-Jacobi equation.

This method is demonstrated for a conformally

flat models.

We found 7 types of conformally–flat spaces

of Stackel type (2.0).

Metric of class C = 0 does not admit solutions

with a dust in general relativity.

Metric of class B = 0 in general relativity admit

two types solutions with a dust.


