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Outline

The group classification of possible models of axion
electrodynamics with arbitrary self interaction of axionic field is
presented. We prove that extension of the basic Poincaré
invariance appears for the exponential, constant and trivial
interaction terms only. In addition, we use symmetries of axion
electrodynamics to find exact solutions for its equations invariant
with respect to three parameter subgroups of Poincaré group. As a
result we obtain an extended class of exact solutions depending on
arbitrary parameters and on arbitrary functions as well. We
indicate and discuss possible solutions whose group velocity is
higher than the velocity of light. However, their energy velocity are
subluminal and so there is not a causality violation.
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Introduction

The group analysis of PDEs is a fundamental field including many
interesting internal problems. But maybe the most attractive
feature of the group analysis is its great value for various
applications such as defining of maximal Lie symmetries of
complicated physical models, construction of models with a priory
requested symmetries, etc. Sometimes the group analysis is the
only way to find exact solutions for nonlinear problems.
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Introduction

I am going to present you some results obtained with application of
the Lie theory to the complicated physical model called axion
electrodynamics. Let me start with physical motivations of this
research.
To explain the absence of the CP symmetry violation in interquark
interactions Peccei and Quinn (Phys. Rev. Lett. 38, 1440 (1977))
suggested that a new symmetry must be presented. The
breakdown of this gives rise to the axion field proposed ten years
later by Weinberg (Phys. Rev. Lett. 40, 223 (1978)) and Wilczek
(Phys. Rev. Lett. 40, 279 (1978)). And it was Wilczek who
presented the first analysis of possible physical effects caused by
axions in electrodynamics (Phys. Rev. Lett. 58, 1799 (1987)).
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Introduction

Axions belong to the main candidates to form the dark matter.
New important arguments to study axionic theories were created in
solid states physics. Namely, it was found recently (X-L. Qi, T. L.
Hughes, and S-C. Zhang, Phys. Rev. B 78, 195424 (2008)) that
the axionic-type interaction terms appears in the theoretical
description of a class of crystalline solids called topological
insulators. In other words, although their existence is still not
confirmed experimentally axioins are requested at least in three
fundamental fields: QCD, cosmology and condensed matter
physics. And we decide ”to help physicists”: make group analysis
of axionic theories and find in some sense completed set of the
related exact solutions.
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Field equations of axion electrodynamics

Let us start with the following model Lagrangian:

L =
1

2
pµp

µ − 1

4
FµνF

µν +
κ

4
θFµν F̃

µν − V (θ). (1)

Here Fµν is the strength tensor of electromagnetic field,

F̃µν = 1
2εµνρσF

ρσ, pµ = ∂µθ, θ is the pseudoscalar axion field,
V (θ) is a function of θ, κ is a dimensionless constant, and the
summation is imposed over the repeating indices over the values 0,
1, 2, 3. Moreover, the strength tensor can be expressed via
four-potential A = (A0,A1,A2,A3) as:

Fµν = ∂µAν − ∂νAµ. (2)

Setting in (1) θ = 0 we obtain the Lagrangian for Maxwell field.
Moreover, if θ is a constant then (1) coincides with the Maxwell
Lagrangian up to constant and four-divergence terms. Finally, the
choice V (θ) = 1

2m
2θ2 reduces L to the standard Lagrangian of

axion electrodynamics.
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Let us write the Euler-Lagrange equations corresponding to
Lagrangian (1):

∇ · E = κp · B,
∂0E−∇× B = κ(p0B + p× E),

∇ · B = 0, (3)

∂0B +∇× E = 0,

�θ = −κE · B + F , (4)

where

B = {B1,B2,B3}, E = {E 1,E 2,E 3}, E a = F 0a, Ba =
1

2
εabcFbc ,

F =
∂ϕ

∂θ
, � = ∂20 −∇2, ∂i =

∂

∂xi
, p0 =

∂θ

∂x0
, p = ∇θ.
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We make:

Group classification of equations of motion, where function F
is treated as an arbitrary element;

Construction of an entire family of exact solutions;

In addition we discuss obtained solutions whose group velocity is
larger than the velocity of light and prove that they do not lead to
causality violation.
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Equation (4) includes the free element F (θ) so we can expect that
symmetries of system (3), (4) will depend on explicit form of F .
Consider the infinitesimal operator

Q = ξµ∂µ + ηj∂B j + ζ j∂E j + σ∂θ, (5)

and its second prolongation

Q(2) = Q + ηi
j ∂

∂B j
i

+ ζi
j ∂

∂E j
i

+ σi∂θi + ηik
j ∂

∂B j
ik

+ ζik
j ∂

∂E j
ik

+ σik∂θik .

(6)
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Using the infinitesimal invariance criterium we obtain the following
determining equations:

ξµBa = 0, ξµE a = 0, ξµθ = 0,
ξµxµ = ξνxν , ξµxν + ξνxµ = 0, µ 6= ν,

(7)

σE a = 0, σBa = 0,
σθθ = 0,

(8)

�σ +
(
σθ − 2ξ0x0

)
(F (θ) + kE aBa)

−k(Baζa + E aηa)− σḞ (θ) = 0.

�ξµ − 2σθxµ = 0, (9)
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ξa
xb

+ ηbBa = 0, ξa
xb

+ ζbE a = 0,
ξa
xb
− ηa

Bb = 0, ξa
xb
− ζa

Eb = 0, a 6= b,
ξax0 − εabcη

c
Eb = 0, ξax0 − εabcζ

c
Bb = 0,

∂aη
a = 0, ∂aζ

a + Ba∂aσ = 0,
ηax0 + εabcζ

c
xb

= 0, ζax0 + Baσx0 − εabc(ηc
xb

+ Ebσxc ) = 0,
ηax0 + εabcζ

c
xb

= 0, ζax0 + Baσx0 − εabc(ηc
xb

+ Ebσxc ) = 0,
ηa + Baσθ + ζaθ − Bbζa

Eb + εabcE
bξ0xc = 0,

ηax0 + εabcζ
c
xb

= 0, ζax0 + Baσx0 − εabc(ηc
xb

+ Ebσxc ) = 0,
ηa + Baσθ + ζaθ − Bbζa

Eb + εabcE
bξ0xc = 0,

ζa − ηaθ + E aσθ − Ebζa
Eb − εabcBbξcx0 = 0,

ηaBa − ηbBb = 0, ηaBa − ζbEb = 0, ηaθ − Baηb
Eb = 0, ζaθ − E aηb

Eb = 0.
(10)
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Integrating this system we find that for arbitrary F generator Q
should be a linear combination of the following operators:

P0 = ∂0, Pa = ∂a,

Jab = xa∂b − xb∂a + Ba∂Bb − Bb∂Ba + E a∂Eb − Eb∂E a , (11)

J0a = x0∂a + xa∂0 + εabc

(
Eb∂Bc − Bb∂E c

)
where εabc is the unit antisymmetric tensor, a, b, c = 1, 2, 3.
Operators (11) form a basis of the Lie algebra p(1,3) of the
Poincaré group P(1,3). Thus the group P(1,3) is the maximal
continuous invariance group of system (3), (4) with the arbitrary
function F (θ).
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This symmetry can be extended provided function F has one of the
following particular forms:

F = 0, F = c or F = b exp(aθ)

where c , a and b are non-zero constants. The corresponding
additional elements of the invariance algebra are:

P4 = ∂θ if F (θ) = c ,
X = aD − P4 if F (θ) = beaθ,
P4 = ∂θ, D = x0∂0 + xi∂i − B i∂B i − E i∂E i if F (θ) = 0.

(12)
Operator P4 generates shifts of dependent variable θ, D is the
dilatation operator generating a consistent scaling of dependent
and independent variables, and X generates the simultaneous shift
and scaling.
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Algorithm for finding group solutions

The algorithm for construction of group solutions of partial
differential equations goes back to Sophus Lie. Being applied to
system (3), (4) it includes the following steps (compare, e.g., with
[Olver, 1986]):

To find a basis of the maximal Lie algebra Am corresponding
to continuous local symmetries of the equation.

To find the optimal system of subalgebras SAµ of algebra Am.
In the case of PDE with four independent variables like
system (3), (4) it is reasonable to restrict ourselves to
three-dimensional subalgebras. Their basis elements have the
unified form Qi = ξµi ∂µ + ϕk

i ∂uk , i = 1, 2, 3 where uk are
dependent variables (in our case we can chose ua = Ea,
u3+a = Ba, u7 = θ, a = 1, 2, 3).
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Algorithm for finding group solutions

Any three-dimensional subalgebra SAµ whose basis elements
satisfy the conditions

rank{ξµi } = rank{ξµi , ϕ
k
i } (13)

and
rank{ξµi } = 3 (14)

gives rise to change of variables which reduces system (3), (4)
to a system of ordinary differential equations (ODEs). The
new variables include all invariants of three parameter Lie
groups corresponding to the optimal subalgebras SAµ.

Solving if possible the obtained ODEs one can generate an
exact (particular) solution of the initial PDEs.

Applying to this solution the general symmetry group
transformation it is possible to generate a family of exact
solutions depending on additional arbitrary (transformation)
parameters.
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Exact solutions

To generate exact solutions of system (3), (4) we can exploit its
invariance w.r.t. the Poincaré group. The subalgebras of algebra
p(1,3) defined up to the group of internal automorphism has been
found for the first by Belorussian mathematician Bel’ko (I.V.
Bel’ko, Izv. Akad. Nauk Bel. SSR 1, 5 (1971)). We use a more
advanced classification of these subalgebras proposed by Patera,
Winternitz and Zassenhaus (1975) who had specified 30
three-dimensional subalgebras.
Notice that some of these subalgebras do not satisfy conditions
(13), (14), and to construct the related exact solutions we develop
a special technique which generalizes the weak transversality
approach proposed by Grundland, Tempesta, and Winternitz
(2003).

Oksana Kuriksha Invariant solutions for equations of axion electrodynamics.



Exact solutions

Types of reductions:

Reductions to algebraic equations

Reductions to linear ODEs

Reductions to nonlinear ODEs

Reductions to PDEs
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Examples of exact solutions

Among the constructed exact solutions are plane wave solutions:

B1 =
1√

ν2 − 1
(e1θ + b1), B2 =

1√
ν2 − 1

(e2θ + b2), B3 = e3,

E1 = νB2 +
√
ν2 − 1e1, E2 = −νB1 +

√
ν2 − 1e2, E3 = e3θ + b3

θ = aνe
νω + bνe

−νω +
c

ν2
, ω = x3 − νx0, ν > 1

where aν and bν are arbitrary constants.
Solitary wave solution:

θ =
3a

4µ
tanh2

(
1

2

√
a

2
(x3 − νx0)

)
for F = µθ2. (15)
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Examples of exact solutions

Solutions in radial variables:

Ba =
qxa
r3
, Ea =

qθxa
r3

,

θ =
1

r

(
C1e

qx0+
m
r + C2e

qx0−m
r + C3e

−qx0+
m
r + C4e

−qx0−m
r

)
.

(16)

Unusual planar solutions:

E1 = −B2 =
x1
x3
, E3 = 0, B1 = E2 =

x2
x3
, B3 = b, θ = arctan

(
x2
x1

)
,

where x2 = x21 + x22 , b is a constant.

Oksana Kuriksha Invariant solutions for equations of axion electrodynamics.



Examples of exact solutions

A particularity of the latest solutions is that they are planar ones.
Nevertheless the electric field decreases with growing of x as the
field of point charge in the three dimensional space.
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Conservation laws

An immediate consequence of symmetries presented above is the
existence of conservation laws. Indeed, the system (3), (4) admits
a Lagrangian formulation. Thus, in accordance with the Noether
theorem, symmetries of equations (3), (4) which keep the shape of
Lagrangian (1) up to four divergence terms should generate
conservation laws. Let me present the conserved
energy-momentum tensor:

T 00 =
1

2
(E2 + B2 + p20 + p2) + V (θ),

T 0a = T a0 = εabcEbBc + p0pa,

T ab = −E aEb − BaBb + papb

+
1

2
δab(E2 + B2 + p20 − p2 − 2V (θ)).

(17)
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The tensor Tµν is symmetric and satisfies the continuity equation
∂νT

µν = 0. Its components T 00 and T 0a are associated with the
energy and momentum densities.
It is important to note that the energy momentum tensor does not
depend on parameter κ and so is not affected by the term
κ
4θFµν F̃

µν presented in Lagrangian (1). In fact this tensor is
nothing but a sum of energy momenta tensors for the free
electromagnetic field and scalar field. Moreover, the interaction of
these fields between themselves is not represented in (17).
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Let us consider one of the obtained plane wave solutions:

B1 = c1kθ, B2 = −c1ε, B3 = 0,

E1 = −c1k , E2 = −c1εθ, E3 = 0,

θ = aµ cos(µ(εx0 − kx3)).

(18)

Here ε, k , and aµ are arbitrary parameters which should satisfy the
following dispersion relations:

(ε2 − k2)(µ2 − c21 ) = m2. (19)

Let µ2 > c21 then (ε2 − k2) = m2

µ2−c21
> 0. The corresponding group

velocity Vg is equal to the derivation of ε w.r.t. k, i.e.,

Vg =
∂ε

∂k
=

k

ε
. (20)

Since ε > k , the group velocity appears to be less than the velocity
of light (remember that we use the Heaviside units in which the
velocity of light is equal to 1).
On the other hand the phase velocity Vp = ε

k is larger than the
velocity of light, but this situation is rather typical in relativistic
field theories.
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In the case µ2 < c21 the wave number k is larger than ε. As a
result the group velocity (20) exceeds the velocity of light, and we
have a phenomenon of superluminal motion. To understand wether
the considered solutions are causal let us calculate the energy
velocity which is equal to the momentum density divided by the
energy density:

Ve =
T 03

T 00
. (21)

Substituting (18) into (17) we find the following expressions for
T 00 and T 03:

T 00 =
1

2
(ε2 + k2)Φ +

1

2
m2θ2, T 03 = εkΦ

where Φ = c21 (θ2 + 1) + µ2(a2µ − θ2). Thus

Ve =
2εkΦ

(ε2 + k2)Φ + 1
2m

2θ2
<

2εk

ε2 + k2
< 1,

and this relation is valid for ε > k and for ε < k as well.
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We see that the energy velocity is less than the velocity of light.
Thus solutions (18) can be treated as causal in spite of the fact
that for µ2 < c21 the group velocity is superluminal.
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Conclusions

1. We make group classification of equations of axion
electrodynamics given by relations (3) and (4).
2. Exact solutions corresponding to three-dimensional subalgebras
of the Poincaré algebra has been found. There are 32 types of such
solutions defined up to arbitrary constants or arbitrary functions.
Some of these solutions can have interesting applications, e.g. for
construction of exactly solvable problems for Dirac fermions.
3. Solutions describing the faster-then-light propagation are
admissible. However, these solutions are causal since the
corresponding energy velocity is subluminal.
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