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Three types of mathematical problems

All mathematical problems can be generally divided into next three types

Proof

Method searching

Classification

Classification problems aim to find among given class of problems all
subclasses, that can be solved by specific method.

Classification ⊃ Method searching ⊃ Proof
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Steps to solve classification problem

Choose the method

Fix the class

Define equivalence transformations

Search for nonequivalent subclasses of the given class, that can be
solved by the given method

Find additional equivalence transformations
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Classification of equations

+ Classification of equations that admit Lie symmetries

+ Classification of equations that admit potential symmetries

+ Classification of equations that admit conditional symmetries

+ Classification of superintegrable equations

— Classification of shape-invariant equations
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Scalar superpotentials

Shape-invariant scalar superpotentials

1 W = µx , (harmonic oscilator)

2 Wk = µx − k
x , (3D oscilator)

3 Wk = λk tanλx + µ secλx , (Scarf 1)

4 Wk = λk tanhλx + µ sechλx , (Scarf 2)

5 Wk = λk cothλx + µ cschλx , (Pöschl-Teller)

6 Wk = k − µ exp(−x), (Morse)

7 Wk = −k
x + ω

k , (Coulomb)

8 Wk = λk tanλx + ω
k , (Rosen-Morse 1)

9 Wk = λk tanhλx + ω
k , (Rosen-Morse 2)

10 Wk = −λk cothλx + ω
k , (Eckart)
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Pron’ko-Stroganov problem

Consider the spectral problem for radial functions

Hkψ = Ekψ, (1)

where Hk is a Hamiltonian with a matrix potential, Ek and ψ are its
eigenvalue and eigenfunction correspondingly, moreover, ψ is a
two-component spinor. Up to normalization of the radial variable x the
Hamiltonian Hk can be represented as

Hk = − ∂2

∂x2
+ k(k − σ3)

1

x2
+ σ1

1

x
, (2)

where σ1 and σ3 are Pauli matrices and k is a natural number. In
addition, solutions of equation (1) must be normalizable and vanish at the
boundary of the interval (0,∞).
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Pron’ko-Stroganov problem

Hamiltonian Hk can be factorized as

Hk = a+k a
−
k + ck , (3)

where

a−k =
∂

∂x
+Wk , a+k = − ∂

∂x
+Wk , ck = − 1

(2k + 1)2

and W is a matrix superpotential

Wk =
1

2x
σ3 −

1

2k + 1
σ1 −

2k + 1

2x
. (4)

Another nice property of Hamiltonian Hk is that its superpartner H+
k is

equal to Hk+1, namely

H+
k = a−k a

+
k + ck = − ∂2

∂x2
+ (k + 1)(k + 1− σ3)

1

x2
+ σ1

1

x
= Hk+1

Thus equation (1) admits supersymmetry with shape invariance and can
be solved by algebraic methods.
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Problem statement

Equation

Hkψ = −∂
2ψ

∂x2
+ Vk(x)ψ = Ekψ, (5)

where Vk(x) is n × n dimensional matrix potential.

Factorization

Hk = a+k a
−
k + ck , H+

k = a−k a
+
k + ck , (6)

where

a+k = − ∂

∂x
+Wk , a−k =

∂

∂x
+Wk , (7)

ck is a scalar function of k , that vanishes with a corresponding
member in the Hamiltonian. Wk(x) is matrix superpotential.

Shape-invariance
H+
k = HFk

. (8)
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Shape-invariance condition

Under invertible transformation of variables

k → α(k) (9)

the function Fk = F (k) changes by a similar transformation

F (k) → αFα−1(k) = α(F (α−1(k))). (10)

Searching for such transformation, that would change function F (k) to
unit shift, we get the equation

F (α−1(k)) = α−1(k + 1). (11)

The above equation is known as Abel functional equation.
Let X be R or R+. It is proved that

(C1) if F : X → R is an injective function such that for every compact set
K ⊂ X there exists p ∈ N such that ∀n,m ∈ N0, |n −m| ≥ p :

F n(K ) ∩ Fm(K ) = ∅
then there exists a solution to the Abel functional equation.

So if the above condition is fulfilled, Fk can be transformed into unit shift.
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Class of superpotentials

Problem - to find all shape-invariant potentials, which accept
factorization (6)

W 2
k +W ′

k = W 2
k+1 −W ′

k+1 + Ck , (12)

where Ck = ck+1 − ck .

Superpotentials of the special form

Wk = kQ + P +
1

k
R, (13)

where P, Q, R are n × n Hermitian matrices depending on x .

Irreducibility - matrices P,Q and R cannot be simultaneously
transformed to a block diagonal form since if such (unitary)
transformation is admissible, the related superpotentials are
completely reducible.
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Equivalence transformations

In the set Ωn of all superpotentials of dimension n, which is the set of all
hermitian matrices of dimension n, that depends on variable x and
parameter k, introduce an equivalence transformation:

We say, that two superpotentials W̃k ,Wk ∈ Ωn are equivalent W̃k ∼ Wk ,
if there exists unitary matrix U, which doesn’t depend on variable x such,
that

W̃k = UWkU
† (14)

Beside that, consider following two potentials to be equivalent

Wk(x) ∼ Wk(x + γ), (15)

where γ ∈ R — is an arbitrary constant.
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The determining equations

The system of determining equations:

1 Q ′ = Q2 + ν

2 P ′ = 1
2{P,Q}+ µ

3 R ′ = 0

4 R2 = ω2

5 {P,R}+ κ = 0

6 Ck = 2µ+ (2k + 1)ν − κ
k(k+1) +

(2k+1)ω2

k2(k+1)2

where ν, µ, ω,κ are arbitrary real constants.
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Irreducible special cases

Cases, when one of the matrices P,Q or R is proportional to the unit
matrix or equal to zero matrix are special.
Irreducible special cases

1 Q = q(x)I

2 R = 0

3 P = 0

4 P,Q,R are not proportional to zero or unit matrices

The case when two or three of these matrices are equal to zero or
proportional to the unit matrix is obviously reducible. Because in this case
they can always be diagonalized with some unitary transformation which
doesn’t depend on variable x (thought can depend on parameter k). The
exception is scalar case, when matrices has dimension equal to one and
can’t be divided into blocks.
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Q = q(x)I

Reducibility - if n > 2 then up to unitary transformation Wk(x) is a
direct sum of 1× 1 and 2× 2 irreducible superpotentials.

Solvability - the problem can be completely solved in Pauli matrix
basis:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (16)
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Shape-invariant superpotentials

Shape-invariant matrix superpotentials

1 Wk = ((2µ+ 1)σ3 − 2k − 1) 1
2x + ω

2k+1σ1, µ > −1
2 ,

2 Wk = λ
(
−k + exp(−λx)σ1 − ω

k σ3
)
,

3 Wk = λ
(
k tanλx + µ secλxσ3 +

ω
k σ1

)
, µ > 0,

4 Wk = λ
(
−k cothλx + µ cschλxσ3 − ω

k σ1
)
, µ < 0,

5 Wk = λ
(
−k tanhλx + µ sechλxσ1 − ω

k σ3
)
, µ > 0,

where ω > 0.

Superpotentials are defined up to unitary transformation and shifts of
variable x and parameter k.

If µ = 0 and ω = 1 then �1 defines well known superpotential for
Pron’ko-Stroganov problem.

Corresponding potentials
Vk = W 2

k −W ′
k + ck .
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Dual shape-invariance

Inverse problem - to find possible superpotentials corresponding to
given potentials.

Invariance - potentials corresponding to �1 , �3 , �4 are invariant with
respect to the simultaneous change

µ→ k − 1

2
, k → µ+

1

2
. (17)

In addition, there exist another transformations of µ and k but they
lead to the same results.

Dual shape-invariance - superpotentials �1 , �3 , �4 , should be
considered together with superpotentials which can be obtained using
the change (17).
Thus corresponding potentials admit a dual supersymmetry, i.e.,
superpartners for these potentials can be obtained either by shifts of k
or by shifts of µ while simultaneous shifts are forbidden. We call this
phenomena dual shape invariance.
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R = 0

The determining equations have the form

1 Q ′ = Q2 + ν

2 P ′ = 1
2{P,Q}+ µ

3 Ck = 2µ+ (2k + 1)ν

Matrix Q can be diagonalized with unitary transformation, which
does not depend on variable x .

The second equation can be solved element-wise.

Additional equivalence transformation k → k + β, P → P + βQ.

Additional equivalence transformations for some members of the class.
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P = 0

The system of determining equations has the form

1 Q ′ = Q2 + ν,

2 R ′ = 0, R2 = ω2,

3 δk = (2k + 1)ν + (2k+1)ω2

k2(k+1)2
.

Matrix Q can be diagonalized with unitary transformation, which
does not depend on the variable x .

Matrix R has the form R = UR̃U†, where

R̃ = ω

(
Im×m 0m×s

0s×m −Is×s

)
, m + s = n,

U — special unitary matrix, which is not block-diagonal.
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P ,Q,R are not proportional to unit or zero matrices

Matrix Q can be diagonalized with unitary transformation which,
does not depend on variable x .

The equation for matrix P can be solved element-wise.

Matrix R — constant matrix, with the square proportional to the unit
one.

Consistency condition

µ = 0, κ = 0

Algebraic condition

{P,R} = 0
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Ground and excited states

Schrödinger equation

Hkψ ≡ (a+k a
−
k + ck)ψ = Ekψ

can be integrated using an algebraic methods:

Ground state - proportional to the square integrable solutions of the
first order equation

a−k ψ
0
k(x) ≡

(
∂

∂x
+Wk

)
ψ0
k(x) = 0. (18)

with energy E 0
k = ck .

Excited states - solutions which correspond to nth excited state can
be represented as

ψn
k(x) = a+k a

+
k+1 · · · a

+
k+n−1ψ

0
k+n(x). (19)

The corresponding eigenvalue is En
k = E 0

k +
∑n−1

i=0 Ck+i .

Dual shape-invariance - it is necessary to repeat the steps
enumerated above using additional superpotentials.
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Ground and excited states

Superpotential

Wk = λ
(
−k + exp(−λx)σ1 −

ω

k
σ3

)
(20)

Ground state

ψ0
k(x) =

(
y

1
2
−kK|ν|(y)

−y
1
2
−kK|ν−1|(y),

)
, (21)

where y = exp(−λx) and ν = ω/k + 1/2.

Energy spectrum

E = −λ2
(
N2 +

ω2

N2

)
, N = n + k (22)

Integrability condition

k < 0, k2 > ω (23)
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Ground and excited states
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Figure: Probability densities (ψn
k )

†ψn
k versus x for superpotential �2 with

λ = 1, k = −4, ω = 2: n = 0 (continues), n = 1 (dashed) and n = 2 (dashed and
pointed)
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Discussion

Thank you!

Yuri Karadzhov (Kiev) Matrix Superpotentials September, 2012 24 / 24


