Unitary similarity. New criteria

Tatiana G. Gerasimova

Kiev National Taras Shevchenko University, Ukraine
Beograd, 2012
\& [FGS'11] D. Farenick, T. G. Gerasimova, N. Shvai, A complete unitary similarity invariant for unicellular matrices, Linear Algebra Appl., 435 (2011) 409-419.
Q[FFGSS'11] D. Farenick, V. Futorny, T. G. Gerasimova, V. V. Sergeichuk, N. Shvai, Criterion of unitary similarity for upper triangular matrices in general position. Linear Algebra Appl., 435 (2011) 1356-1369.
Q [G'12] T.G. Gerasimova, Unitary similarity to a normal matrix. Linear Algebra Appl., 436 (2012) 3777-3783.

Problem definition

A classical problem of operator theory:
If R and S are operators acting on a complex Hilbert space H, then how can one determine whether R and S are unitarily similar?

Problem definition

A classical problem of operator theory:
If R and S are operators acting on a complex Hilbert space H, then how can one determine whether R and S are unitarily similar?

Operators R and S are called unitary similar, if there is a unitary operator U such that $S=U^{*} R U$.

Problem definition

A classical problem of operator theory:
If R and S are operators acting on a complex Hilbert space H, then how can one determine whether R and S are unitarily similar?

More precisely, the problem is to find a set of invariants that completely determine an operator up to unitary similarity.

Problem definition

A classical problem of operator theory:
If R and S are operators acting on a complex Hilbert space H, then how can one determine whether R and S are unitarily similar?

More precisely, the problem is to find a set of invariants that completely determine an operator up to unitary similarity.

Invariants under unitary similarity:

- norm
- trace
- spectrum
- numerical range

Finite-dimensional Hilbert space

Specht's theorem (1940)

Operators R and S on a finite-dimensional Hilbert space H are unitarily similar if and only if

$$
\operatorname{trace} \omega\left(R, R^{*}\right)=\operatorname{trace} \omega\left(S, S^{*}\right)
$$

for every word $\omega(s, t)$ in two noncommuting variables.

Finite-dimensional Hilbert space

Specht's theorem (1940)

Operators R and S on a finite-dimensional Hilbert space H are unitarily similar if and only if

$$
\operatorname{trace} \omega\left(R, R^{*}\right)=\operatorname{trace} \omega\left(S, S^{*}\right)
$$

for every word $\omega(s, t)$ in two noncommuting variables.

Pappacena's restriction (1997)

Operators R and S on an n-dimensional Hilbert space H are unitarily similar if and only if trace $\omega\left(R, R^{*}\right)=$ trace $\omega\left(S, S^{*}\right)$ for every word $\omega(s, t)$ in two noncommuting variables whose length is at most

$$
n \sqrt{\frac{2 n^{2}}{n-1}+\frac{1}{4}}+\frac{n}{2}-2
$$

Finite-dimensional Hilbert space

Specht's theorem (1940)

Operators R and S on a finite-dimensional Hilbert space H are unitarily similar if and only if

$$
\operatorname{trace} \omega\left(R, R^{*}\right)=\operatorname{trace} \omega\left(S, S^{*}\right)
$$

for every word $\omega(s, t)$ in two noncommuting variables.
This theorem is extended to compact operators in trace- and Schmidt classes on infinite-dimensional Hilbert spaces and cannot be extended to all compact operators.

Arveson's criterion

For each matrix polynomial

$$
p(x)=A_{0}+A_{1} x+\cdots+A_{t} x^{t} \in \mathbb{C}^{k \times k}[x]
$$

whose coefficients A_{i} are $k \times k$ matrices, we define its value at an operator $R \in B(H)$ as follows:

$$
p(R):=A_{0} \otimes I+A_{1} \otimes R+\cdots+A_{t} \otimes R^{t} \in \mathbb{C}^{k} \otimes H
$$

where I is the identity operator and

$$
\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right] \otimes R:=\left[\begin{array}{ccc}
a_{11} R & \ldots & a_{1 n} R \\
\vdots & & \vdots \\
a_{m 1} R & \ldots & a_{m n} R
\end{array}\right]
$$

Infinite-dimensional Hilbert space

Arveson's theorem (1972)

Two irreducible operators R and S acting on a Hilbert space, such that the orders $n(R)$ and $n(S)$ are defined and equal, are unitarily similar if and only if

$$
\begin{equation*}
\|f(R)\|_{o p}=\|f(S)\|_{o p} \text { for all } f \in \mathbb{C}^{k \times k}[x] \text { and } k=1,2, \ldots, n(R), \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{o p}$ is the operator norm.

Infinite-dimensional Hilbert space

Arveson's theorem (1972)

Two irreducible operators R and S acting on a Hilbert space, such that the orders $n(R)$ and $n(S)$ are defined and equal, are unitarily similar if and only if

$$
\begin{equation*}
\|f(R)\|_{o p}=\|f(S)\|_{o p} \text { for all } f \in \mathbb{C}^{k \times k}[x] \text { and } k=1,2, \ldots, n(R), \tag{1}
\end{equation*}
$$

where $\|\cdot\|_{o p}$ is the operator norm.
Question For which classes of operators it suffices to check condition (1) only for usual polynomials of operators instead of the matrix polynomials? That is, when the condition $k=1,2, \ldots, n(R)$ can be replaced by $k=1$?

Volterra operator

The classical Volterra operator V of integration:

$$
V f(t)=2 i \int_{t}^{1} f(s) d s, f \in L^{2}([0,1]), t \in[0,1] .
$$

Volterra operator

The classical Volterra operator V of integration:

$$
V f(t)=2 i \int_{t}^{1} f(s) d s, f \in L^{2}([0,1]), t \in[0,1] .
$$

Arveson's Question (1969) Whether the norms $\|f(V)\|_{o p}$, for $f \in \mathbb{C}[t]$, determine the unitary similarity class of V in the set of irreducible compact operators on $L^{2}([0,1])$.

Toeplitz matrix

Theorem ([FGS'11] and [FFGSS'11])

Let $R \in M_{n}(\mathbb{C})$ be an upper triangular Toeplitz matrix

$$
\left[\begin{array}{ccccc}
a_{0} & a_{1} & a_{2} & \cdots & a_{n-1} \\
& a_{0} & a_{1} & \ddots & \vdots \\
& & \ddots & \ddots & a_{2} \\
& & & a_{0} & a_{1} \\
0 & & & & a_{0}
\end{array}\right], \quad \text { whith } a_{1} \neq 0
$$

and $S \in M_{n}(\mathbb{C})$ be any matrix. Then R and S are unitarily similar if and only if

$$
\|f(R)\|=\|f(S)\| \quad \text { for all } \quad f \in \mathbb{C}[t] \quad \text { of degree at most } n-1,
$$

where $\|\cdot\|$ is the operator norm or Frobenius norm

Normal matrix

Theorem [G'12]

Let $R \in M_{n}(\mathbb{C})$ be a normal matrix and $S \in M_{n}(\mathbb{C})$ be any matrix. Then R and S are unitarily similar if and only if
$\|f(R)\|_{F}=\|f(S)\|_{F} \quad$ for all $\quad f \in \mathbb{C}[t] \quad$ of degree at most $n-1$, where $\|\cdot\|_{F}$ is the Frobenius norm

Normal matrix

Theorem [G'12]

Let $R \in M_{n}(\mathbb{C})$ be a normal matrix and $S \in M_{n}(\mathbb{C})$ be any matrix. Then R and S are unitarily similar if and only if $\|f(R)\|_{F}=\|f(S)\|_{F} \quad$ for all $\quad f \in \mathbb{C}[t] \quad$ of degree at most $n-1$, where $\|\cdot\|_{F}$ is the Frobenius norm

In case of the operator norm, this statement is not true!

Counterexample 1

Consider the following normal operators acting on \mathbb{C}^{3} :

$$
R=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Then the equality of operator norms holds, i.e.

$$
\|f(R)\|_{o p}=\|f(S)\|_{o p} \quad \text { for all } f \in \mathbb{C}[t]
$$

but R and S are not unitarily similar.

Counterexample 2

Consider the following irreducible nilpotent operators acting on \mathbb{C}^{3} :

$$
R=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{ccc}
0 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

Then the equality of norms holds, i.e.

$$
\|f(R)\|=\|f(S)\| \quad \text { for all } f \in \mathbb{C}[t]
$$

but R and S are not unitarily similar.

But their 2×2 principal minors

$$
R_{2}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right], \quad S_{2}=\left[\begin{array}{ll}
0 & 2 \\
0 & 0
\end{array}\right]
$$

don't satisfy this condition.
Thus it is natural to check the equality of norms not only for $n \times n$ matrices R and S, but also for all their $k \times k$ principal minors R_{k} and S_{k} :

$$
\left\|f\left(R_{k}\right)\right\|=\left\|f\left(S_{k}\right)\right\| \quad \text { for all } f \in \mathbb{C}[t], \quad k=1, \ldots, n-1
$$

Criterion for indecomposable matrices

Theorem ([FGS'11] and [FFGSS'11])

Let R and S be $n \times n$ upper triangular matrices that are not similar to direct sums of square matrices of smaller sizes. Then R and S are unitarily similar if and only if

$$
\left\|f\left(R_{k}\right)\right\|=\left\|f\left(S_{k}\right)\right\| \quad \text { for all } f \in \mathbb{C}[x] \text { and } k=1, \ldots, n,
$$

where R_{k} and S_{k} are $k \times k$ principal submatrices of R and S, and $\|\cdot\|$ is the operator norm or Frobenius norm.

Criterion for indecomposable matrices

Theorem ([FGS'11] and [FFGSS'11])

Let R and S be $n \times n$ upper triangular matrices that are not similar to direct sums of square matrices of smaller sizes. Then R and S are unitarily similar if and only if

$$
\left\|f\left(R_{k}\right)\right\|=\left\|f\left(S_{k}\right)\right\| \quad \text { for all } f \in \mathbb{C}[x] \text { and } k=1, \ldots, n,
$$

where R_{k} and S_{k} are $k \times k$ principal submatrices of R and S, and $\|\cdot\|$ is the operator norm or Frobenius norm.

We consider only upper triangular matrices because of the Schur unitary triangularization theorem: every square matrix A is unitarily similar to an upper triangular matrix B whose diagonal entries are complex numbers in any prescribed order, say, in the lexicographical order:

$$
a+b i \preccurlyeq c+d i \quad \text { if either } a<b \text {, or } a=b \text { and } b \leqslant d \text {. }
$$

Counterexample 3

The theorem cannot be extended to matrices with several eigenvalues in the case of Frobenius norm. Consider the following two operators acting on \mathbb{C}^{4} :

$$
R=\left[\begin{array}{cccc}
0 & 1 & -1 & a \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 3
\end{array}\right] \quad \text { and } \quad S=\left[\begin{array}{cccc}
0 & 1 & -1 & b \\
0 & 1 & 1 & 1 \\
0 & 0 & 2 & 1 \\
0 & 0 & 0 & 3
\end{array}\right]
$$

where $a \neq b,|a|=|b|=1$.
Then the equality of norms holds, i.e.

$$
\left\|f\left(R_{k}\right)\right\|_{F}=\left\|f\left(S_{k}\right)\right\|_{F} \quad \text { for all } f \in \mathbb{C}[x] \text { and } k=1, \ldots, n,
$$

where R_{k} and S_{k} are $k \times k$ principal submatrices of R and S, but R and S are not unitarily similar.

Matrices in general position

Let

$$
X_{n}:=\left[\begin{array}{ccc}
x_{11} & \ldots & x_{1 n} \\
& \ddots & \vdots \\
0 & & x_{n n}
\end{array}\right]
$$

be a matrix whose upper triangular entries are variables.
Denote by $\mathbb{C}\left[x_{i j} \mid i \leqslant j \leqslant n\right]$ the set of polynomials in these variables.
For simplicity of notation, we write $f\left\{X_{n}\right\}$ instead of $f\left(x_{11}, x_{12}, x_{22}, \ldots\right)$. For each $f \in \mathbb{C}\left[x_{i j} \mid i \leqslant j \leqslant n\right]$, write

$$
M_{n}(f):=\left\{A \in \mathbb{C}^{n \times n} \mid A \text { is upper triangular and } f\{A\} \neq 0\right\}
$$

For example, if

$$
f\left\{X_{n}\right\}:=x_{12} x_{23} \cdots x_{n-1, n} \prod_{i<j}\left(x_{i i}-x_{j j}\right)
$$

then $M_{n}(f)$ consists of matrices of the form

$$
\left[\begin{array}{cccc}
\lambda_{1} & a_{12} & \cdots & a_{1 n} \\
& \lambda_{2} & \ddots & \vdots \\
& & \ddots & a_{n-1, n} \\
0 & & & \lambda_{n}
\end{array}\right], \quad \begin{gathered}
\\
\lambda_{i} \neq \lambda_{j} \text { if } i \neq j, \\
\text { all } a_{i, i+1} \neq 0
\end{gathered}
$$

We say that $n \times n$ upper triangular matrices in general position possess some property if there exists a nonzero polynomial $f \in$ $\mathbb{C}\left[x_{i j} \mid i \leqslant j \leqslant n\right]$ such that all matrices in $M_{n}(f)$ possess this property. Thus, this property holds for all matrices in $\mathbb{C}^{n \times n}$ except for matrices from an algebraic variety of smaller dimension.

Criterion for matrices in general position

Theorem [FFGSS'11]

Two $n \times n$ upper triangular matrices R and S in general position with lexicographically ordered eigenvalues on the main diagonal are unitarily similar if and only if

$$
\left\|f\left(R_{k}\right)\right\|_{F}=\left\|f\left(S_{k}\right)\right\|_{F} \quad \text { for all } f \in \mathbb{C}[x] \text { and } k=1, \ldots, n,
$$

where R_{k} and S_{k} are $k \times k$ principal submatrices.

Criterion for unicellular operators

Theorem [FGS'11]

Let R and S be compact operators on a complex separable Hilbert space such that all their invariant subspaces form chains, i.e.

$$
\begin{aligned}
& 0 \subset U_{1} \subset U_{2} \subset \ldots \quad \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=i . \\
& 0 \subset V_{1} \subset V_{0} \subset \ldots
\end{aligned}
$$

Then the operators R and S are unitarily similar if and only if

$$
\left\|f\left(\left.R\right|_{U_{i}}\right)\right\|_{o p}=\left\|f\left(\left.S\right|_{V_{i}}\right)\right\|_{o p} \quad \text { for all } f \in \mathbb{C}[t] \quad \text { and } \quad i=1,2, \ldots
$$

Criterion for unicellular operators

Theorem [FGS'11]

Let R and S be compact operators on a complex separable Hilbert space such that all their invariant subspaces form chains, i.e.

$$
\begin{aligned}
& 0 \subset U_{1} \subset U_{2} \subset \ldots \\
& 0 \subset V_{1} \subset V_{2} \subset \ldots
\end{aligned} \quad \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=i
$$

Then the operators R and S are unitarily similar if and only if

$$
\left\|f\left(\left.R\right|_{U_{i}}\right)\right\|_{o p}=\left\|f\left(\left.S\right|_{V_{i}}\right)\right\|_{o p} \quad \text { for all } f \in \mathbb{C}[t] \quad \text { and } \quad i=1,2, \ldots
$$

An operator $R \in B(H)$ is called unicellular if for every two invariant closed subspaces \mathfrak{L} and \mathfrak{M} of the operator R we have:

$$
\mathfrak{L} \subset \mathfrak{M} \quad \text { or } \quad \mathfrak{M} \subset \mathfrak{L}
$$

Criterion for unicellular operators

Theorem [FGS'11]

Let R and S be compact operators on a complex separable Hilbert space such that all their invariant subspaces form chains, i.e.

$$
\begin{aligned}
& 0 \subset U_{1} \subset U_{2} \subset \ldots \\
& 0 \subset V_{1} \subset V_{2} \subset \ldots
\end{aligned} \quad \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=i
$$

Then the operators R and S are unitarily similar if and only if

$$
\left\|f\left(\left.R\right|_{U_{i}}\right)\right\|_{o p}=\left\|f\left(\left.S\right|_{V_{i}}\right)\right\|_{o p} \quad \text { for all } f \in \mathbb{C}[t] \quad \text { and } \quad i=1,2, \ldots
$$

In case of a finite-dimensional Hilbert space an operator is unicellular if its matrix is similar to a Jordan block.

Criterion for unicellular operators

Theorem [FGS'11]

Let R and S be compact operators on a complex separable Hilbert space such that all their invariant subspaces form chains, i.e.

$$
\begin{aligned}
& 0 \subset U_{1} \subset U_{2} \subset \ldots \\
& 0 \subset V_{1} \subset V_{2} \subset \ldots
\end{aligned} \quad \operatorname{dim} U_{i}=\operatorname{dim} V_{i}=i
$$

Then the operators R and S are unitarily similar if and only if $\left\|f\left(\left.R\right|_{U_{i}}\right)\right\|_{o p}=\left\|f\left(\left.S\right|_{V_{i}}\right)\right\|_{o p} \quad$ for all $f \in \mathbb{C}[t] \quad$ and $\quad i=1,2, \ldots$

If the Hilbert space is finite-dimensional then the criterion holds for all unicellular operators.

Arveson's question

Arveson's Question (1969) Whether the norms $\|f(V)\|_{o p}$, for $f \in \mathbb{C}[t]$, determine the unitary similarity class of V in the set of irreducible compact operators on $L^{2}([0,1])$.

Arveson's question

Arveson's Question (1969) Whether the norms $\|f(V)\|_{o p}$, for $f \in \mathbb{C}[t]$, determine the unitary similarity class of V in the set of irreducible compact operators on $L^{2}([0,1])$.

Theorem [FGS'11]

For every $\varepsilon>0$ there is a finite-dimensional subspace
$L \subset L^{2}([0,1])$ such that if P denotes the projection onto L, then
(1) $P V P_{\mid L}$ is a unicellular operator whose unitary similarity orbit, as an operator on L, is completely determined by the family of norms $\left\{\left\|f\left(P V P_{\mid L}\right)\right\|: f \in \mathbb{C}[t]\right\}$
(2) $\|P V P-V\|<\varepsilon$.

Thanks for your attention!

