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Introduction

Invariant differential operators play very
important role in the description of phys-
ical symmetries - starting from the early
occurrences in the Maxwell, d"Allembert,
Dirac, equations, to the latest applica-
tions of (super-)differential operators
in conformal field theory, supergravity
and string theory. Thus, it iIs impor-
tant for the applications in physics to
study systematically such operators.

In a recent paper we started the sys-
tematic explicit construction of invari-
ant differential operators. We gave an



explicit description of the building blocks,
namely, the parabolic subgroups and
subalgebras from which the necessary
representations are induced. Thus we
have set the stage for study of different

non-compact groups.

Since the study and description of de-
tailed classification should be done group
by group we had to decide which groups
to study. One first choice would be
non-compact groups that have discrete
series of representations. By the Harish-

Chandra criterion these are groups where



holds:
rank G = rank K,

where K is the maximal compact sub-
group of the non-compact group G.
Another formulation is to say that the
Lie algebra G of G has a compact Car-

tan subalgebra.

Example: the groups SO(p, q) have dis-
crete series, except when both p, g are

odd numbers.



This class is rather big, thus, we de-

cided to consider a subclass, namely,

the class of Hermitian symmetric spaces.
T he practical criterion is that in these

cases, the maximal compact subalge-

bra IC is of the form:

K = so(2)®d K’
The Lie algebras from this class are:
so(n,2), sp(n,R), su(m,n),
so*(2n), Eg_14), Er(_25)
These groups/algebras have highest /lowest

weight representations, and relatedly holo-
morphic discrete series representations.



The most widely used of these alge-
bras are the conformal algebras so(n,2) in
n-dimensional Minkowski space-time.

In that case, there is a maximal Bruhat
decomposition that has direct physical

meaning:

so(n,2) = MOADN SN,

M = so(ln—1,1), dimA=1,

dimN = dimN =n
where so(n—1,1) is the Lorentz alge-
bra of n-dimensional Minkowski space-
time, the subalgebra A = so(1,1) rep-

resents the dilatations, the conjugated



subalgebras N, N are the algebras
of translations, and special conformal
transformations, both being isomorphic

to n-dimensional Minkowski space-time.

The subalgebra P=MPABN (=
M ® AP N)is a maximal parabolic

subalgebra.



T here are other special features which
are important. In particular, the com-
plexification of the maximal compact
subgroup is isomorphic to the complex-
ification of the first two factors of the

Bruhat decomposition:

Kt = so(n,C) ® so(2,C) =

~ so(n —1,1)%®s0(1,1)* = M@ A"



In particular, the coincidence of the
complexification of the semi-simple sub-

algebras:
’CICC _ MC (*)

means that the sets of finite-dimensional
(nonunitary) representations of M are

in 1-to-1 correspondence with the finite-
dimensional (unitary) representations of
I’

It turns out that some of the hermitian-
symmetric algebras share the above-

mentioned special properties of so(n, 2).



This subclass consists of:

so(n,2), sp(n,R), su(n,n),

SO*(4:TL), E7(_25)

the corresponding analogs of MinkowskKi

space-time V being:

R"~ 11 Sym(n,R), Herm(n,C),

Herm(n,Q), Herm(3,0)
In view of applications to physics, we

proposed to call these algebras 'confor-

mal Lie algebras’, (or groups).



The corresponding groups are also called
'"Hermitian symmetric spaces of tube
type' [Faraut-Koranyi]. The same class
was identified from different consider-
ations by Gunaydin who called them
'conformal groups of simple Jordan al-
gebras’. In fact, the relation between
Jordan algebras and division algebras
was known long time ago. Our class
was identified from still different con-
siderations also by [Mack-de Riese] where
they were called 'simple space-time sym-
metries generalizing conformal symme-

try’.



We have started the study of the above
class in the framework of the present
approach in the cases: so(n,2), su(n,n),
sp(n,R), E7_a5), and we have consid-
ered also the algebra Eg(_14), CT.
hep-th /0702152, 0812.2655, 0812.2690,
1205.5521.

Lately, we discovered an efficient way
to extend our considerations beyond
this class introducing the notion of
'parabolically related non-compact

semisimple Lie algebras’.



e Definition: Let G,G" be two
non-compact semisimple Lie algebras
with the same complexification ¢t &
g’C. We call them parabolically re-
lated if they have parabolic subalge-
bras P=MDPABN, P =M
A'®N’, such that: ME =2 M'C (=
Pt = PO

Certainly, there are many such parabolic
relationships for any given algebra G.
Furthermore, two algebras G,G’ may
be parabolically related with different

parabolic subalgebras.



For example, the exceptional Lie alge-
bras Eg) and Egg) are parabolically
related (and also to Eg_14)) With
maximal parabolics such that M* =
sl(6,C). But these two algebras are re-
lated also by another pair of maximal
parabolics such that M® 2 si(3,C) &

sl(3,C) & sl(2,C), cf. [D].



Another interesting example are the
algebras so*™(2m) and so(p,q) which
have a series of maximal parabolics with
M-factors [D]:

M; = su"(25) @ so"(2m — 4j) ,
i <[3],
M; = Sl(2j,R) @so(p—2j,q—2j) ’

I<BI<IE,

whose complexifications coincide for

P+q=2m
(Mj)" = (M))" =
= sl(27,C) & so(2m — 43,C) ,
<@ <3 =E.



As we know only for m = 2n, i.e.,
for so*™(4n) is fulfilled relation (x),
with M = M, = su*(2n) from
(?7?), (recalling that K/ & su(2n)).
Obviously, so(p,q) is parabolically re-
lated to so*(4n) with this M-factor
only when p = g = 2n, i.e., G/ =
so(2n,2n) with M. = sl(2n,R)

(which is outside the range of (?77)).

We summarize the algebras paraboli-
cally related to conformal Lie algebras
with maximal parabolics fulfilling (x) in

the following table:



Table of conformal Lie algebras (CLA) G with M-factor fulfilling (x)

and the corresponding parabolically related algebras G’

g K’ M g’ M/

dim V/
SO(')’I,, 2) SO(TL) SO(TL o 17 1) SO(p, Q)7 SO(p - 17 q— 1)
n =3 ptqg=

n =n-+2
su(2k, 2k) su(2k) @ su(2k) | sl(2k,C)r | su*(4k) su*(2k) @ su*(2k)
k> 2

(2k)? sl(4k,R) | sl(2k,R) & sl(2k,R)
sp(2r,R) su(2r) sl(2r,R) sp(r,T) su*(2r)
rank = 2r > 4

r(2r+1)
s0* (4n) su(2n) su*(2n) so(2n,2n) | sl(2n,R)
n >3

n(2n — 1)
E7(—25) €6 Eg(—26) Eq 7 FEs6)

27
below not CLA !
Eﬁ(_14) 80(10) 8U(5, 1) EG(G) 8l(6, R)

21 E6(2) SU(B, 3)




where we have included also the al-
gebra E6(-14)i we display only the
semisimple part K/ of IC; sl(n,C)r de-
notes sl(n,C) as a real Lie algebra,
(thus, (sl(n,C)g)* = sl(n,C)@sl(n,C));
eg denotes the compact real form of
Eg; and we have imposed restrictions
to avoid coincidences or degeneracies
due to well known isomorphisms:
so(1,2) = sp(1,R) = su(1,1),

so(2,2) = so(1,2) & so(1,2),

su(2,2) = so(4,2), sp(2,R) = so(3,2),
so*(4) = so(3) & so(2,1), so*(8) =
so(6, 2).



Preliminaries

Let G be a semisimple non-compact
Lie group, and K a maximal compact
subgroup of G. Then we have an Iwa-
sawa decomposition G = K AgNg, Where
Ag is Abelian simply connected vector
subgroup of G, Ngp is a nilpotent
simply connected subgroup of G pre-
served by the action of Ag. Further,
let My be the centralizer of Ag in K.
Then the subgroup Py = MyAgNg is
a minimal parabolic subgroup of G. A

parabolic subgroup P = M'A’N’ is



any subgroup of G which contains a

minimal parabolic subgroup.

Further, let G, K, P, M, A,N denote
the Lie algebras of G, K,P,M,A, N,

resp.

For our purposes we need to restrict

to maximal parabolic subgroups P =
MAN, i.e. rankA =1, resp. to max-
imal parabolic subalgebras P = M®
ADPN with dim A =1.



Let v be a (non-unitary) character
of A, v € A*, parameterized by a real
number d, called the conformal weight

or energy.

Further, let u  fix a discrete se-
ries representation DH of M on the
Hilbert space V), or the finite-dimensional
(non-unitary) representation of M with

the same Casimirs.



We call the induced representation xy =
Indg(u v ®1) an elementary repre-
sentation of G [DMPPT]. (These are
called generalized principal series repre-
sentations (or limits thereof) in [Knapp].)

Their spaces of functions are:

Cx = {F € C®(G,V,) | Fgman) =

= e V). pt(m~1) F(g)}

where a = exp(H) € A/, H ¢ A,
m € M’ n € N’. The representation

action is the left regular action:

(TX(g)F)(g") = Flg~'9"), g9 €G.



e An important ingredient in our con-
siderations are the highest/lowest weight
representations of GC. These can be
realized as (factor-modules of) Verma
modules VA over G, where A €
(HY)*, HC is a Cartan subalgebra of
GC, weight A = A(x) is determined
uniquely from x [D].



Actually, since our ERs may be in-
duced from finite-dimensional represen-
tations of M (or their limits) the
Verma modules are always reducible.
Thus, it is more convenient to use gen-
eralized Verma modules VX such that
the role of the highest/lowest weight
vector vg is taken by the (finite-dimensional)
space V,vg. For the generalized Verma
modules (GVMSs) the reducibility is con-
trolled only by the value of the confor-
mal weight d. Relatedly, for the inter-
twining differential operators only the
reducibility w.r.t. non-compact roots

IS essential.



e One main ingredient of our approach
is as follows. We group the (reducible)
ERs with the same Casimirs in sets
called multiplets [D]. The multiplet
corresponding to fixed values of the
Casimirs may be depicted as a con-
nected graph, the vertices of which cor-
respond to the reducible ERs and the
lines (arrows) between the vertices cor-
respond to intertwining operators. The
explicit parametrization of the multi-
plets and of their ERs is important for

understanding of the situation.



In fact, the multiplets contain explic-
itly all the data necessary to construct
the intertwining differential operators.
Actually, the data for each intertwining
differential operator consists of the pair
(B3,m), where 3 is a (non-compact)
positive root of GY, m € N, such
that the BGG Verma module reducibil-
ity condition (for highest weight mod-

ules) is fulfilled:

(A+p,8Y) = m, pY=28/(80)

p is half the sum of the positive roots
of gC.



When the above holds then the Verma
module with shifted weight VA—™P
(or VA—-mB  for GVM and 3 non-
compact) is embedded in the Verma
module VA (or VA). This embedding
IS realized by a singular vector wvg de-
termined by a polynomial Py, 3(G7) in
the universal enveloping algebra (U(G-)) vg
G~ is the subalgebra of gt generated
by the negative root generators [Dix].
More explicitly, [D], fv;?n’ﬁ = Pm,3 0
(or v;”;%ﬁ = Pm., 3 Vuvo for GVMs).



Then there exists [D] an intertwining

differential operator

Dmp @ Cxa) — Cx(A-mp)
given explicitly by:

Dm,g = Pm,p(97)

A

where G— denotes the right action on

the functions F.



In most of these situations the invari-
ant operator Dy, 3 has a non-trivial
invariant kernel in which a subrepresen-
tation of G is realized. Thus, studying
the equations with trivial RHS:

Pmptf =0, F€Cxa)

IS also very important. For example, in
many physical applications in the case
of first order differential operators, i.e.,
for m = mg = 1, these equations are
called conservation laws, and the ele-
ments f € kerDy,, 3 are called con-

served currents.



T he above construction works also for
the subsingular vectors vggy Of Verma
modules. Such a vector is also ex-
pressed by a polynomial Pgsp(GT) in
the universal enveloping algebra: v, =
Pssv(G7)vg. Thus, there exists a con-
ditionally invariant differential operator
given explicitly by: Dggpy = Pssv(g:),
and a conditionally invariant differen-
tial equation, for many more details,
see [D]. (Note that these operators (equa-

tions) are not of first order.)



Below in our exposition we shall use

the so-called Dynkin labels:
m; = (A—I—p,a?\:/) , 1t=1,...,n,

where A = A(x), p is half the sum of

the positive roots of QC.

We shall use also the so-called Harish-

Chandra parameters:

mpg = (A +p,0)

where 3 is any positive root of G
T hese parameters are redundant, since

they are expressed in terms of the Dynkin



labels, however, some statements are
best formulated in their terms. (Clearly,
both the Dynkin labels and Harish-Chandra
parameters have their origin in the BGG

reducibility condition.)



Conformal algebras so(n,2) and

parabolically related

Let G = so(n,2), n > 2. We label the

signature of the ERs of G as follows:

X = {ni,...,nz;c}t,
n;j €%/2, c=d—-5, h=]I[5],
n1 <mng <---<mp, mneven,

O0<n<ng <+ <y n odd ,

where the last entry of x Ilabels the

characters of A, and the first h en-

tries are labels of the finite-dimensional

nonunitary irreps of M = so(n —1,1).



The reason to use the parameter ¢ in-
stead of d is that the parametrization
of the ERs in the multiplets is given in

a simple intuitive way:

+

X7 = {enl,...,nﬁ;::nﬁ_l_l},
" < Mhta

=+
Xy = {enl,...,nh 1’n—|—1’::nl~z}

+
X3 = {eni,... STVf, 0Tl s Mo L g 5 tn; ]
Xé: = {eni,n n; , Ny +no}
:I:h 19783 9eeey Top h—l—l’_ 2

Xﬁ—l—l — {enz,...,nh,nh+1,_-n1}

T, n even
€ —
1, n odd



Further, we denote by (fz. the repre-
+

sentation space with signature ;- .

The number of ERs in the correspond-
ing multiplets is equal to:

W (GC, HE)| / IW(ME,HE)| = 2(1+h)
where HC, ’H% are Cartan subalge-

bras of G, MC, resp.

The multiplets can be seen pictorially

in the two figures for n even and n odd.



/
dl d1
Y
9 7 7 C;
A
/
dQ d2
Y
A
7 /
dj,_ d;
Y

SO(n,2) for n>4 even, h = 2

(arrows are differential operators, dashed arrows are integral operators)



m1(€1 - 82)

m2(61 - 83)

m£—2(81 - €£—1>

me—1(€1 — 56)

“

Y

SO(p,q) for p+q=n+2=20=2(h+1)>6 with
maximal parabolic subgroup P = M AN, where M = SO(p — 1,q — 1)
(arrows are differential operators, dashed arrows are integral operators)

€1 £ €, are the non-compact roots,

m; are Harish-Chandra parameters



/
dl d1
Y
9 7 a C;
A
!/
Y
A
. a
dj_y dj,_,
Y
7 — 7+
Cp G
A
- a
dy P
Y
= ) 7+
Ch+1 / Ch+1

SO(n,2) for n>3 odd, h = 5(n—1)

(arrows are differential operators, dashed arrows are integral operators)



ml(el — 82) m1(51 + 52)
Y
Cy ' Cy
A
ma(e1 — €3) ma(e1 + €3)
| .
me—a(e1 — €0-1) me—s(e1 + €r-1)
Y
Cr 7 Cﬁl
A
my—1(€1 — €¢) my—1(e1 + €¢)
Y
_ €
Cé ~—F et Cj

SO(p,q) for p+q=n+2=20+1=2h+3>5 with
maximal parabolic subgroup P = M AN, where M = SO(p—1,q — 1)
(arrows are differential operators, dashed arrows are integral operators)
€1 ek, €1 are the non-compact roots, m; are Harish-Chandra parameters



The ERs in the multiplet are related
by intertwining integral and differen-
tial operators. The integral operators
were introduced by Knapp and Stein.
They correspond to elements of the re-
stricted Weyl group of G. These oper-

ators intertwine the pairs éf

~

G;I: : C?F—>é;|:, 1 = 1,...,14+h

(4

The intertwining differential operators

correspond to non-compact positive roots

of the root system of so(n + 2,C), cf.

[D]. [In the current context, compact



roots of so(n+2,C) are those that are
roots also of the subalgebra so(n,C),
the rest of the roots are non-compact.]
The degrees of these intertwining dif-
ferential operators are given just by the

differences of the ¢ entries:

_ I o — 1~

degd; = degd; = Mo i~ Mhi1_ 4o
1=1,...,h, Vn

deg dBJrl —n9+ny, N even



Matters are arranged so that in ev-
ery multiplet only the ER with signa-
ture x,; contains a finite-dimensional
nonunitary subrepresentation in a sub-
space &£. The latter corresponds to
the finite-dimensional unitary irrep of
so(n + 2) with signature

{n1,..., n;, nﬁ+1}' The subspace & is
annihilated by the operator G+, and

is the image of the operator G .



Although the diagrams are valid for
arbitrary so(p,q) (p+ q > 5) the con-
tents is very different. We comment
only on the ER with signature X;r. In
all cases it contains an UIR of so(p, q)
realized on an invariant subspace D of
the ER Xf. That subspace is annihi-
lated by the operator G, , and is the
image of the operator GIL. (Other

ERs contain more UIRSs.)

If pg € 2N the mentioned UIR is a
discrete series representation. (Other

ERs contain more discrete series UIRS.)



And if g = 2 the invariant sub-
space D is the direct sum of two
subspaces D = DT @ D, in which
are realized a holomorphic discrete se-
ries representation and its conjugate
anti-holomorphic discrete series repre-
sentation, resp. Note that the cor-
responding lowest weight GVM s in-
finitesimally equivalent only to the holo-
morphic discrete series, while the con-
jugate highest weight GVM is infinitesi-
mally equivalent to the anti-holomorphic

discrete series.



Note that the degd;, degd;, are
Harish-Chandra parameters correspond-
ing to the non-compact positive roots
of so(n + 2,C). From these, only
deg d; corresponds to a simple root,

I.e., iIs a Dynkin label.

Above we restricted to n > 2.

The case n = 2 is reduced to n =
1 since so(2,2) = so(1,2) & so(1,2).
The case so(1,2) is special and must
be treated separately. But in fact, it
IS contained in what we presented al-

ready. In that case the multiplets con-



tain only two ERs which may be de-
picted by the top pair xi in both pic-
tures that we presented. And they have
the properties that we described. That
case was the first given already in 1947
independently by Bargmann and Gel’fand

et al.



The Lie algebra su(n,n) and parabol-

ically related

Let G = su(n,n), n > 2. The max-
imal compact subgroup is K = u(1) @
su(n) @ su(n), while M = sl(n,C)p .

The number of ERs in the correspond-

iINng multiplets is equal to

w(GE 1O/ W ME ) = ()

The signature of the ERs of G is:

X = {n1,cecy M1, Mgl ovvy N2p—1;



njeN, c=d-—n

The Knapp—Stein restricted Weyl re-

flection is given by:

GKS . CX — CX/,

X,:{(’n,l, ERRR £ yy nn—l—la o o0 7n2’n—1)*; —C}

* .
(M1yee s M1, Mpt1yee s N2p—1)" =

(nn—l—la ey N2n—15M7y .- - 9nn—1)



Further, we use the root system of the
complex algebra sl(2n,C). The posi-

tive roots a;; in terms of the simple

roots o« are:

Qjj = O + Q1 + T O
1<i1<y3<2n—1,
a;, 1<21<2n-—1

877}
from which the non-compact are:

g 5 =~ ¢t = ~



The correspondence between the sig-
natures x and the highest weight A is
through the Dynkin labels:

n;=m; = (A+p,a)) = (A+p,q;),

i=1,...,2n—1,

C:_%(m&+mn):_%(m1+°“+

+my_1 4+ 2my +mp4q + -0+ map—1)

A=A(x), a = a1+:--+a,_1 Iis
the highest root.



In our diagrams we need also the Harish-
Chandra parameters for the non-compact

roots using the following notation:

mz]Emam:mz—l——l—mJ, 1 < 3

Below we give the diagrams for su(n,n) fc
n=2,3,4. For n = 2k these are dia-
grams also for the parabolically related
su*(4k) and sl(4k,R).

We use the following conventions. Each
intertwining differential operator is rep-

resented by an arrow accompanied by a



symbol z; j encoding theroot 3; j and
the number mg; . which is involved
in the BGG criterion. This notation
IS used to save space, but it can be
used due to the fact that only inter-
twining differential operators which are
non-composite are displayed, and that
the data (B, mg, which is involved in
the embedding VA — VA~™80 tyrns
out to involve only the m; corre-
sponding to simple roots, i.e., for each
B, mg there exists ¢ = (8, mg,A) €
{1,...,7}, (r=rank G), such that mg =
m; . Hence the data (; , MG IS
represented by 25 j on the arrows.



<

VA(‘)"

Main multiplets for su(2,2) = so(4,2), su*(4) = so(5,1),
and sl(4,R) = so(3, 3)



— e NS o
Xpvn =7 " Xpuvn

/— I+
Xpyn —F — Xpyn

I— /-
Xpvn ~— — Xpvn

Sextet of partially equivalent ERs and intertwining operators
given first for so(5, 1), then for so(4,2) (valid also for so(3,3))
(arrows are differential operators, dashed arrows are integral operators)
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Main multiplets for su(3,3)
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su*(8) and si(8,R)

Main multiplets for su(4,4),



The Lie algebras sp(n,R) and

sp(%,5) (n—even)

Let n > 2. Let G = sp(n,R), the
split real form of sp(n,C) = G*.

The maximal compact subgroup is K =
u(1) & su(n), while M = sl(n,R).

The number of ERs in the correspond-

iIng multiplets is:

W (GE, HO)| / [W(ME,H)| = 27



The signature of the ERs of G is:

X:{nla'“ann—l;c}a njENa

The Knapp-Stein restricted Weyl re-
flection acts as follows:

GKS . CX EE— CX/ 0
X, — {(nla'“ann—l)*; _C}a

(nla ce e nn—l)* = (nn—la c v ’I’Ll)

In terms of an orthonormal basis g;,
1 =1,...,n, the positive roots are:

AT = {eite, 1 <1<y < ny
2¢;,1 <1< n}



the simple roots are:

T = {o; =€ — €11, 1 <1< n—1;

an — 2€n}
the non-compact roots:

ﬁz] = €+ €5, , 1<1<73<nmn

the Harish-Chandra parameters: mg =

(A 4+ p,B) for the noncompact roots

are.
n n
mﬁij = (Z‘F )m87 1< 7,
s=1 Ss=j
n
mg;; —

Z Mg
sS=1



The correspondence between the sig-

natures xy and the highest weight A is:

Ng—=—my; , € — —%(m&‘an) —

= - %(m1+""|‘mn—1‘|‘2mn)

where a = (317 is the highest root.

Below we give pictorially the multi-
plets for sp(n,R) for n =2,3,4,5,6.
For n = 2r these are also multiplets

for sp(r,r), r=1,2,3.



AT

AT

Main multiplets for Sp(2, IR) and Sp(1,1)



I+
qu — i qu

Quartet of partially equivalent ERs and intertwining operators
for so(3,2) = sp(2,R) and so(4,1) = sp(1,1)
(arrows are differential operators, dashed arrows are integral operators)



Main multiplets for Sp(3, IR)



Main multiplets for Sp(4, IR) and Sp(2,2)



A+
Ag

Main multiplets for Sp(5, IR)



+
A 0

Main multiplets for Sp(6,R) and Sp(3, 3)



The Lie algebras E7(_55) and Ly
Let G = Er(_25). The maximal com-
pact subgroup is KK = eg® so(2), while

M g EG(—G) .

The Satake diagram is:



The signatures of the ERs of G are:

X = {n1,...,ng; c}, n; € N,
expressed through the Dynkin labels:

n; =m;,

c = —3(mg+my) =
= —L(2my + 2my + 3m3+
+4my + 3ms + 2me + 2my)

The same holds for the parabolically

related exceptional Lie algebra Er (7.



The noncompact roots of the complex

algebra FEr are:

a7, 17, cee o XBT o

1,37y X247 17,45 X274,

x17,34, 17,35 X17,36 5 X17,45+ 17,46 »
27,45 5 X27,46 »

x17,25,4, &*17,26,49 17,354 *17,36,4 »
x17,26,45 » 17,36,45 »

x17,26,35,4 9 *17,26,45,4 »

~

®17.16,35,4 — O,

oy = ;o gt tay, 1<y,
Qjj k= Ckyij = T Qi1 + -+ + g
1< 7, etc.



The multiplets of the main type are in
1-to-1 correspondence with the finite-
dimensional irreps of FEr, i.e., they
will be labelled by the seven positive

Dynkin labels m; € N.

The number of ERs in the correspond-

iIng multiplets is equal to

W (GC,HO)| / IW(ME,HE)| = 56
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Main Type for E7(_a5y and Er




The Lie algebras E6(—14)’ E6(6) and
Ee(2)

Let G = Eg_14)- The maximal
compact subalgebra is K = so(10) &
so(2), while M = su(5,1).

The Satake diagram is:
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The signature of the ERs of G is:

11
X:{n19n39n49n59n6;c}9 C:d_Ta

expressed through the Dynkin labels as:

S
~
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D] =

m&Z

5(m1 +2mg + 2mg + 3myg + 2ms + me)

The same holds for the parabolically
related exceptional Lie algebras FEgg)

and E6(2) .



Further, we need the noncompact roots

of the complex algebra Eg -

a2, 14, 015, 16, 24, 25, 026
2.4, 245, X246, X254, X154, (X264
16,45 15,345 26,455 16,345 16,45

~

x16,35,» ©16,35,4 16,254 — &

The multiplets of the main type are in
1-to-1 correspondence with the finite-
dimensional irreps of G, i.e., they will
be labelled by the six positive Dynkin
labels m; € N. It turns out that each
such multiplet contains 70 ERs/GVMSs

- see the figure below.



Note that there are five cases when
the embeddings correspond to the high-
estroota: VAT S VAT AT = A——
mg . In these five cases the weights

are denoted as: A,;t,,, A,;t,, Ai, Ai
Azl:o,then mg = ml,mg,m4,m5,m6,
resp. We recall that Knapp-Stein oper-
ators GT intertwine the correspond-
ing ERs 7~ and TX+. In the above
five cases the Knapp-Stein operators
GT degenerate to differential opera-

tors as we discussed for so(3,2).

Note that the figure has the standard
Eg symmetry, namely, conjugation ex-
changing indices 1 «+—— 6, 3 «—— 5.
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Main Type for E6(714)7 Eﬁ(ﬁ) and E6(2)



