Nontrivial Kalb-Ramond field of the effective nongeometric background

Ljubica Davidović and Branislav Sazdović

Institute of Physics, University of Belgrade, www.ipb.ac.rs

MPHYS7 September 9-19, 2012 Beograd

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

> The open bosonic string in the weakly curved background

- How to solve the bc?
- First possibility: Treat the boundary conditions as constraints Phys.Rev.D 83 (2011) 066014, JHEP08 (2011) 112

Second possibility: Start looking for the solution right away, guessing its appropriate form

- Exploring the second possibility
- Effective theory on the solution
- Nongeometrical background

Action

describing the open bosonic string

$$S = \kappa \int_{\Sigma} d^2 \xi \Big[\frac{1}{2} \eta^{\alpha\beta} G_{\mu\nu}(x) + \epsilon^{\alpha\beta} B_{\mu\nu}(x) \Big] \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu}, \quad (\varepsilon^{01} = -1)$$

given in the conformal gauge

$$g_{lphaeta} = e^{2F}\eta_{lphaeta}.$$

 space-time equations of motion must be satisfied to have conformaly invariant theory on the quantum level

$$R_{\mu
u}-rac{1}{4}B_{\mu
ho\sigma}B_{
u}^{
ho\sigma}=0, \qquad D_{
ho}B^{
ho}_{
ho\mu
u}=0$$

Weakly curved background

$$G_{\mu\nu}(x) = const$$

$$B_{\mu\nu}(x) = b_{\mu\nu} + \frac{1}{3}B_{\mu\nu\rho}x^{\rho},$$

$$b_{\mu\nu} = const, \quad B_{\mu\nu\rho} = infinitesimal \ const$$

Equation of motion and boundary conditions

- Equation of motion $\ddot{x}^{\mu} = x''^{\mu} 2B^{\mu}_{\nu\rho}\dot{x}^{\nu}x'^{\rho}$
- Boundary conditions

$$\gamma^{0}_{\mu}\Big|_{\sigma=0,\pi} \equiv \frac{\delta \mathcal{L}}{\delta x'^{\mu}}\Big|_{\sigma=0,\pi} = \left[G_{\mu\nu}x'^{\nu} - 2B_{\mu\nu}\dot{x}^{\nu}\right]\Big|_{\sigma=0,\pi} = 0$$

- ▶ Only the even part of γ^0_μ contributes to the boundary condition at $\sigma = 0$
- Introducing the even and odd coordinate parts with respect to $\sigma = 0$

$$q^{\mu}(\sigma) = \sum_{n=0}^{\infty} \frac{\sigma^{2n}}{(2n)!} x^{(2n)\mu} \Big|_{\sigma=0}, \quad \bar{q}^{\mu}(\sigma) = \sum_{n=0}^{\infty} \frac{\sigma^{2n+1}}{(2n+1)!} x^{(2n+1)\mu} \Big|_{\sigma=0}$$

• the boundary condition at $\sigma = 0$ becomes

$$\gamma^{0}_{\mu} \equiv G_{\mu
u} ar{q}^{\prime
u} - 2 b_{\mu
u} \dot{q}^{
u} - 2 h_{\mu
u}(q) \dot{q}^{
u} - 2 h_{\mu
u}(ar{q}) \dot{ar{q}}^{
u}$$

where $h_{\mu\nu}(x) = B_{\mu\nu}(x) - b_{\mu\nu}$ is infinitesimally small

How to solve boundary condition?

- The zeroth order
 - $\bullet \text{ BC } \qquad \gamma^{\mathsf{0}}_{\mu} \equiv \mathcal{G}_{\mu\nu} \bar{q}^{\prime\nu} 2 b_{\mu\nu} \dot{q}^{\nu}.$
 - Solution of BC and consistency condition $(\dot{\bar{q}}^{\mu})' = (\bar{q}'^{\mu})^{\cdot}$

$$\dot{ar{q}}^{\mu}=2b^{\mu}_{\,\,
u}q^{\prime
u},\qquad ar{q}^{\prime\mu}=2b^{\mu}_{\,\,
u}\dot{q}^{
u}.$$

We look for the solution of the BC, in the form

$$\dot{ar{q}}^{\mu} = -A^{\mu}_{1
u}(ilde{q}) \dot{q}^{
u} + 2eta^{\mu}_{1
u}(q) q'^{
u}, \ \\ ar{q}'^{\mu} = -A^{\mu}_{2
u}(ilde{q}) q'^{
u} + 2eta^{\mu}_{2
u}(q) \dot{q}^{
u}.$$

A^μ_{1ν} and A^μ_{2ν} must be odd, β^μ_{1ν} and β^μ_{2ν} must be even functions
 Beside satisfying BC, the solution must obey EM

 $(ar{q}^{\mu})'=(ar{q}'^{\mu})^{\cdot}$ and it must be in agreement with 0th solution.

How to solve boundary condition?

From the symmetry of EM and CC follows $A^{\mu}_{1\nu} = A^{\mu}_{2\nu} \equiv A^{\mu}_{\nu}, \quad \beta^{\mu}_{1\nu} = \beta^{\mu}_{2\nu} \equiv \beta^{\mu}_{\nu}.$ Substituting ansatz into BC for $\sigma = 0$ $\gamma^{0}_{\mu}\Big|_{\sigma=0} = 0 = \left[G_{\mu\nu}[-A^{\nu}_{\rho}(\tilde{q})q'^{\rho} + 2\beta^{\nu}_{\rho}(q)\dot{q}^{\rho}] - 2b_{\mu\nu}\dot{q}^{\nu} - 2h_{\mu\nu}(q)\dot{q}^{\nu} - 2h_{\mu\nu}(\bar{q})2b^{\nu}_{\rho}q'^{\rho}\right]\Big|_{\sigma=0}$ $\rightarrow \left[G\beta(q)\right]_{\mu\nu}\Big|_{\sigma=0} = B_{\mu\nu}(q)\Big|_{\sigma=0}$

which gives $\beta^{\mu}_{\ \nu}(q) = (G^{-1})^{\mu\rho}B_{\rho\nu}(q).$

The ansatz becomes

$$\begin{split} \dot{\bar{q}}^{\mu} &= -A^{\mu}_{\ \nu}(\tilde{q})\dot{q}^{\nu} + 2\Big[G^{-1}B(q)\Big]^{\mu}_{\ \nu}q^{\prime\nu}, \\ \bar{q}^{\prime\mu} &= -A^{\mu}_{\ \nu}(\tilde{q})q^{\prime\nu} + 2\Big[G^{-1}B(q)\Big]^{\mu}_{\ \nu}\dot{q}^{\nu}. \end{split}$$

Unknown coefficient A^{μ}_{ν}

The Solution for A

$$_{(1)}A^{\mu}_{\ \nu}(q) = (G^{-1})^{\mu\rho} \Big[h(q) - 12h(bq)b \Big]_{\rho\nu} \\ _{(2)}A^{\mu}_{\ \nu}(q) = (G^{-1})^{\mu\rho} \Big[-12bh(q)b + 12bh(bq) \Big]_{\rho\nu}$$

Because the solution ${}_{(1)}A^{\mu}{}_{\nu}$ satisfies the homogeneous part of the second equation and the solution ${}_{(2)}A^{\mu}{}_{\nu}$ satisfies the homogeneous part of the first equation, the complete solution for $A^{\mu}{}_{\nu}$ is of the form

$${\cal A}^{\mu}_{\,\,
u}(q)=({\it G}^{-1})^{\mu
ho}\Big[h(q)-12bh(q)b-12h(bq)b+12bh(bq)\Big]_{
ho
u},$$

with the property $(GA)_{\mu\nu} = -(GA)_{\nu\mu}$.

The Solution of BC

• The solution of BC at $\sigma = 0$

$$\begin{aligned} \dot{x}^{\mu} &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu}(\tilde{q})\right] \dot{q}^{\nu} + 2[G^{-1}B(q)]^{\mu}_{\nu}q^{\prime\nu} \\ x^{\prime\mu} &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu}(\tilde{q})\right]q^{\prime\nu} + 2[G^{-1}B(q)]^{\mu}_{\nu}\dot{q}^{\nu} \end{aligned}$$

• The solution of BC at $\sigma = \pi$

$$\begin{aligned} \dot{x}^{\mu}(\sigma) &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu} [{}^{*} \tilde{q}(\pi - \sigma)] \right]^{*} \dot{q}^{\nu}(\pi - \sigma) \\ &+ 2 \left[G^{-1} B [{}^{*} q(\pi - \sigma)] \right]^{\mu}_{\nu} {}^{*} q^{\prime \nu}(\pi - \sigma) \\ x^{\prime \mu}(\sigma) &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu} [{}^{*} \tilde{q}(\pi - \sigma)] \right]^{*} q^{\prime \nu}(\pi - \sigma) \\ &+ 2 \left[G^{-1} B [{}^{*} q(\pi - \sigma)] \right]^{\mu}_{\nu} {}^{*} \dot{q}^{\nu}(\pi - \sigma) \\ &+ 2 \left[G^{-1} B [{}^{*} q(\pi - \sigma)] \right]^{\mu}_{\nu} {}^{*} \dot{q}^{\nu}(\pi - \sigma) \\ &+ 2 \left[G^{-1} B [{}^{*} q(\pi - \sigma)] \right]^{\mu}_{\nu} {}^{*} \dot{q}^{\nu}(\pi - \sigma) \\ &+ 2 \left[G^{-1} B [{}^{*} q(\pi - \sigma)] \right]^{\mu}_{\nu} {}^{*} \dot{q}^{\nu}(\pi - \sigma) \end{aligned}$$

The Solution of BC

Note that if

$$q^{\mu}(\sigma) = {}^{\star}q^{\mu}(\pi - \sigma), \qquad ar{q}^{\mu}(\sigma) = {}^{\star}ar{q}^{\mu}(\pi - \sigma),$$

then the solutions for the bc in 0 and π coincide, and from the relation above follows the 2π -periodicity of x^{μ} . So, if we extend the σ domain and demand 2π -periodicity of the original variable $x^{\mu}(\sigma + 2\pi) = x^{\mu}(\sigma)$, the relation

$$\begin{aligned} \dot{x}^{\mu} &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu}(\tilde{q})\right] \dot{q}^{\nu} + 2[G^{-1}B(q)]^{\mu}_{\nu}q^{\prime\nu} \\ x^{\prime\mu} &= \left[\delta^{\mu}_{\nu} - A^{\mu}_{\nu}(\tilde{q})\right]q^{\prime\nu} + 2[G^{-1}B(q)]^{\mu}_{\nu}\dot{q}^{\nu} \end{aligned}$$

solves both constraints at $\sigma = 0$ and $\sigma = \pi$.

Note that the solution of the boundary condition does not depend on one effective variable only, but on the two variables q^{μ} and \tilde{q}^{μ} . Effective theory (theory obtained on the solution of BC) The effective Lagrangian equals

$$\mathcal{L}^{\mathsf{eff}} = rac{\kappa}{2} \dot{q}^{\mu} G^{\mathsf{eff}}_{\mu
u}(q, \tilde{q}) \dot{q}^{
u} - rac{\kappa}{2} q'^{\mu} G^{\mathsf{eff}}_{\mu
u}(q, \tilde{q}) q'^{
u} + 2\kappa q'^{\mu} B^{\mathsf{eff}}_{\mu
u}(q, \tilde{q}) \dot{q}^{
u},$$

where

$$egin{array}{rcl} G^{
m eff}_{\mu
u}(q, ilde{q}) &= & G^{E}_{\mu
u}(q+2b ilde{q})+4[b^{2}A(ilde{q})-A(ilde{q})b^{2}]_{\mu
u}, \ B^{
m eff}_{\mu
u}(q, ilde{q}) &= & [h(2b ilde{q})+4bh(2b ilde{q})b]_{\mu
u}-B^{\
ho}_{\mu}(q)G^{E}_{
ho
u}(q). \end{array}$$

The expression

$$G^{E}_{\mu
u}(x) \equiv G_{\mu
u} - 4B_{\mu
ho}(x)(G^{-1})^{
ho\sigma}B_{\sigma
u}(x)$$

is the definition of the open string metric. In the weakly curved background (in the leading order in $B_{\mu\nu\rho}$) it is equal to

Effective theory

Hereafter, we will consider the action $S^{eff} = \int d\tau \int_{-\pi}^{\pi} d\sigma \mathcal{L}^{eff}$. This will cause the disappearance of the term in the effective metric which depends on \tilde{q} and the term in effective Kalb-Ramond field which depends on q

$$egin{aligned} S^{ ext{eff}} &= \kappa \int_{\Sigma_1} d^2 \xi \Big[rac{1}{2} \eta^{lphaeta} G^{ ext{eff}}_{\mu
u}(q) + \epsilon^{lphaeta} B^{ ext{eff}}_{\mu
u}(2b ilde{q}) \Big] \partial_lpha q^\mu \partial_eta q^
u, \ G^{ ext{eff}}_{\mu
u}(q) &= G^E_{\mu
u}(q), \ B^{ ext{eff}}_{\mu
u}(2b ilde{q}) &= -rac{\kappa}{2} [g \Delta heta(2b ilde{q})g]_{\mu
u}, \end{aligned}$$

 $\Delta heta$ is the infinitesimal part of the non-commutativity parameter

$$\theta^{\mu\nu} = -\frac{2}{\kappa} \Big[G_E^{-1} B G^{-1} \Big]^{\mu\nu} = \theta_0^{\mu\nu} - \frac{2}{\kappa} \Big[g^{-1} (h + 4bhb) g^{-1} \Big]^{\mu\nu},$$

$$g_{\mu\nu} = G_{\mu\nu}^E(0) \text{ and } \theta_0^{\mu\nu} = \theta^{\mu\nu}(0) = -\frac{2}{\kappa} \Big[g^{-1} b G^{-1} \Big]^{\mu\nu}.$$

Effective theory

- Unexpected things in the effective theory:
 - the appearance of the non-trivial Kalb-Ramond field $B_{\mu\nu}^{eff}$,
 - its dependence on the coordinate \tilde{q}^{μ} instead on q^{μ} (essentially the cause of the first).
- The theory of unoriented closed string (effective theory for constant background) does not contain Kalb-Ramond field.
 - ► The effective Kalb-Ramond field appears in the effective action within the term $B_{\mu\nu}^{eff}\dot{q}^{\mu}q'^{\nu}$.
 - If the Kalb-Ramond field depends on the Ω-even variable, this term does not contribute.
- In WCB the effective Kalb-Ramond field depends on q̃^μ (Ω-odd).
- $B_{\mu\nu}^{eff}(2b\tilde{q})$ is proportional to \tilde{q}^{μ} .
- ► The effective Kalb-Ramond field is odd under σ -parity transformation $\Omega B_{\mu\nu}^{eff}[2b\tilde{q}(\sigma)] = -B_{\mu\nu}^{eff}[2b\tilde{q}(\sigma)].$
- ► The term $B_{\mu\nu}^{eff}(2b\tilde{q})\dot{q}^{\mu}q^{\prime\nu}$ is Ω-even, so it survives.

Nongeometric background

The background of the effective theory depends on two variables q^{μ} and \tilde{q}^{μ} . The first is the even part of the initial coordinate and the second satisfies

$$\dot{ ilde{q}}^{\mu}=q^{\prime\mu},\qquad ilde{q}^{\prime\mu}=\dot{q}^{\mu}.$$

The variable \tilde{q}^{μ} appears as an argument of $B_{\mu\nu}^{eff}$ only, which is the infinitesimal of the first order. The zeroth order equation of motion for q^{μ} is just $\partial_{+}\partial_{-}q^{\mu} = 0$, with the solution

$$q^{\mu}(\sigma) = f^{\mu}(\sigma^{+}) + f^{\mu}(\sigma^{-}).$$

From $\partial_{\pm} f^{\mu}(\sigma^{\mp}) = 0$, one has $\dot{f}^{\mu}(\sigma^{\pm}) = \pm f'^{\mu}(\sigma^{\pm})$. Therefore, $\dot{q}^{\mu}(\sigma) = f'^{\mu}(\sigma^{+}) - f'^{\mu}(\sigma^{-})$, and consequently for both equations we obtain

$$\tilde{q}^{\mu}(\tau,\sigma)=f^{\mu}(\sigma^{+})-f^{\mu}(\sigma^{-}),$$

which means that $\tilde{q}^{\mu}(\tau,\sigma)$ is T-dual mapping of the effective coordinate $q^{\mu}(\tau,\sigma)$.

Conclusion

- The solution of the Neumann boundary conditions on the open string endpoints in the weakly curved background, causes the nongeometric effective background
- This background depends both on the conventional effective coordinate q^μ and on its T-dual ğ^μ
- The complete transition from the original theory to the effective theory consists of
 - 1. the transition from conventional to the doubled geometry

$$x^{\mu}
ightarrow q^{\mu}, ~ ilde{q}^{\mu}$$

2. the background field transition

$$G_{\mu
u}
ightarrow G^{
m eff}_{\mu
u}(q), \qquad B_{\mu
u}(x)
ightarrow B^{
m eff}_{\mu
u}(2b ilde{q}) \,.$$

► The appearance of the doubled target space allowed the string to see the effective background field $B_{\mu\nu}^{eff}$.

Effective backgrounds

Let us summarize the forms of the initial and the corresponding effective backgrounds in the following table.

Original theory		Effective theory	
Metric field $G_{\mu\nu}$	Kalb-Ramond field $B_{\mu u}$	Metric field $G^{eff}_{\mu u}$	Kalb-Ramond field $B^{eff}_{\mu u}$
$G_{\mu\nu}$	$b_{\mu u}$	$g_{\mu\nu}=G_{\mu\nu}-4b_{\mu\rho}b^{\rho}_{\ \nu}$	0
$G_{\mu u}$	$\frac{1}{3}B_{\mu\nu\rho}x^{\rho}$	$G_{\mu\nu}$	0
$G_{\mu\nu}$	$\check{b}_{\mu\nu} + \frac{1}{3}B_{\mu\nu\rho}x^{ ho}$	$G_{\mu u}-4B_{\mu ho}(q)B^{ ho}_{ u}(q)$	$-rac{\kappa}{2}(g\Delta heta(2b ilde{q})g)_{\mu u}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ