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Abstract: Starting from a general second order differential equation, the Lie symmetry analysis of the  2D  Black-Scholes 
model for option pricing is performed. The corresponding Lie algebra is identified and the algorithm for constructing exact 
(invariant) solutions under one-dimensional and two-dimensional subalgebras of this Lie algebra is illustrated. By applying 
the inverse symmetry problem, more general D2  equivalent models, as symmetry group, with Black-Scholes or Jacobs-
Jones ones, are pointed out. 
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Preliminary remarks 

 
 

• Description of social and of individual wealth – topic of interest not only for economists, but 
for mathematicians and physicists, too.  

 
• Several techniques of fundamental physics, coming from quantum mechanics, nonlinear 

dynamics, field theory and other related tools, have been applied in finance and in all areas 
of economics. Common golden thread: stochastic processes. 

 
• The option pricing theory, one of the most successful theories which describe various 

phenomena of financial markets as evolution of value for financial derivatives, stock price 
patterns, critical crashes etc., is essentially based on equations coming from Physics. 

 
Example 1: Black-Scholes formula has been derived starting from the heat equation and 
using Ito's lemma for Brownian motion. 
(Fischer Black and Myron Scholes, Nobel Prize for Economics in 1997, together with Robert 
Merton) 

 
Example 2: Dragulescu and Yakovenko models of money, wealth and income distributions 
start from the claim that the probability distribution follows the Boltzmann-Gibbs law. 



I.1.The concept of integrability for dynamical systems 
 

- Dynamical systems are described by nonlinear differential equations. If solutions exist, the 
diffential system is said to be integrable.  

 
- Sometime it is difficult to find a complete set of solutions and it is quite enough if one can 

decide on the integrability of the system.  
 
Methods: the Hirota's bilinear method, the Backlund transformation method, the inverse 
scattering method, the Lax pair operator, the Painleve analysis, etc.  

 
- To decide if a nonlinear differential equation is integrable, one of the following situation 

should appear: 
 
 i  the existence of a number of functionally independent first integrals/invariants equal to the 
order of the system in general and half that for a Lagrangian system as a consequence of 
Liouville's Theorem; 
 ii  the existence of a sufficient number of Lie symmetries to reduce the partial differential 
equation to an ordinary differential equation; 
 iii  Painlevé test. 



 
I.2.The symmetry method for solving dynamical systems 

 
• There is no a general theory for completely solving of the nonlinear pdes.  
• One of the most useful techniques - the symmetry method. It is useful for:  

- symmetry reduction of differential equations and thus obtain classes of exact solutions.  
- as symmetry transforms solutions into solutions, one can generate new solutions from known 

ones. 
• Initially: the Lie (classical) symmetry method (CSM).  
For a  n -th order partial differential system: 

Δx,unx  0  
x ≡ x i,    i  1,p ⊂ Rp   independent variables, u ≡ u,  1,q ⊂ Rq   the dependent ones. The notation  
un  designates the set of variables which includes  u  and the partial derivatives of  u  up to  n -th 
order. 
The general infinitesimal symmetry operator has the form:  
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The  n -th extension is:  
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Notations:  

uJ
  ∂m u

∂x j1∂x j2 . .∂x jm  



J x i,un  DJ −∑
i1

p

 iui
 ∑

i1

p

 iuJ,i
 ,   1,q

 
ui
  ∂u



∂x i , i  1,p
 

uJ,i
 

∂uJ


∂x i  ∂m1u
∂x i∂x j1∂x j2 . .∂x jm

 
 

DJ  Dj1Dj2 . . .Djm 
d m

dx j1 dx j2 . .dx jm
 
 

 
• The invariance condition is: 

0?][ 0
)( =Δ =Δ

nX  
• The characteristic equations associated to the general symmetry generator have the form: 

dx 1

1 . . . dx p

p  du1

1
. . . duq

q
 
 

• By integrating one get the invariants  Ir,    r  1, p  q − 1  of the analyzed system.  
• Similarity reduction:  the set of similarity variables is found in terms of which the original 

evolutionary equation with  p  independent variables and  q  dependent ones can be reduced to 
a set of differential equations with  p  q − 1  variables.  



 
Generalizations of the Lie symmetry method: 

 
 
1. The non-classical symmetry method (Bluman and Cole): added the invariance surface 

condition: 

Qx,u1 ≡ x,u −∑
i1

p

 ix,u ∂u


∂x i  0,   1,q
 

Consequences:  
- Smaller number of determining equations for the infinitesimals   ix,u,    x,u,    
- More solutions than the CSM (any classical symmetry is a non-classical one) 

2.  The direct method (Clarkson and Kruskal): a direct, algorithmic method for finding symmetry 
reductions.  

3. The differential constraint approach (Olver and Rosenau): the original system of partial 
differential equations can be enlarged by appending additional differential constraints (side 
conditions), resulting an over-determined system of partial differential equations.  

4. The generalized conditional symmetries method or conditional Lie-Bäcklund symmetries 
(Fokas, Liu and Zhdanov). 



  
I.4.The inverse symmetry problem 

 
• The direct symmetry problem of evolutionary equations consists in:  
- Determining the Lie symmetry group corresponding to a given evolutionary equation.  
- Obtaining the invariants associated to each symmetry operator (with the characteristic 

equations).  
- Obtaining some reduced equations with the similarity reduction procedure. 
- Solving the reduced equation and generating the similarity solution of the analyzed model. 

 
• The inverse symmetry problem: what is the largest class of evolutionary equations which 

are equivalent from the point of view of their symmetries?  
• So, this problem supposes to impose a concrete symmetry group to a general analyzed 

model. With this condition, the general symmetry determining equations could be solved and 
allow to determine all concrete models which admit the same Lie symmetry group. 

• The example of a D2  dynamical system: 
),,,(),,,(),,,(),,,(),,,(),,,(),,,( 22 utyxGuutyxFuutyxEuutyxDuutyxCuuutyxBuutyxAu xyyxyxxyt +++++++=   (I.1) 

with  Ax,y, t,u, Bx,y, t,u, Cx,y, t,u, Dx,y, t,u, ),,,,( utyxE Fx,y, t,u, Gx,y, t,u  arbitrary functions.  
- The general expression of the Lie symmetry operator with  ≡ 1. : 
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- The symmetry invariance condition is given by the relation: 
)],,,(),,,(),,,(),,,(),,,(),,,(),,,([0 22

)2( utyxGuutyxFuutyxEuutyxDuutyxCuuutyxBuutyxAuX xyyxyxxyt −−−−−−−=  
- The previous relation has the equivalent expression: 



0  −Atuxy − Btuxuy − Ctu2x − Dtu2y − Etuy − Ftux − Gt − Axuxy − Bxuxuy −

− Cxu2x − Dxu2y − Exuy − Fxux − Gx − Ayuxy − Byuxuy − Cyu2x − Dyu2y −

− Eyuy − Fyux − Gy − Auuxy − Buuxuy − Cuu2x − Duu2y − Euuy − Fuux −

− Gu   t − Axy − C2x − D2y − Bxuy − Fx − Byux − Ey  
The functions   t,x,y,2x,2y,xy   can be determined using well-known formulas. 

 
- Equating with zero the coefficient functions of various monomials in derivatives of u , the 

following partial differential system with 11  equations is obtained: 
 

uyuxuu CBDB 22 0;0;0;0 φξφηηξ −=−===  
0  Ay − Ay − Au  Ax − Ax  2Dy  2Cx − At

0  Ax  2Dy − Dy − Dx − Du − Dt

0  −A2u  Bx − Bu  By − Bt − Bx − Bu − By  
0  −t  Fx − Bx  Ey − Et − Ex − Ey − Eu

 Axy − Axu  C2x  D2y − 2Dyu      (I.2) 
0  − t − By  Fx  Ey − Ft − Fx − Fy − Fu

Axy − Ayu  C2x  D2y − 2Cxu  
0   t  Gu − Fx − Ey − Gt − Gx − Gy − Gu

− Axy − C2x − D2y  
 



II. Applications. Option pricing theory 
 
II.1.The 1D Black-Scholes model 
 
Ito’s formula for Brownian motion - important mathematical ingredient  
 
Let x(t) be a function of t, which satisfies the stochastic differential equation 

 
where a(x,t) and b(x,t) are deterministic functions of x and t, and z represents a standard 
Brownian motion. 
 
Let f(x,t) be a twice continuously differentiable function of x and t. Then, 

 
The 1D Black-Scholes models for a European option:  

  0
2
1

2
22 =−++ rurxuuxu xxt σ       (II.1)  

ux, t = the value of the option with a defined pay-off,  
x ∈ 0, = the price of the underlying asset 
t ∈ 0,= time  
  = the volatility of the underlying asset (annual volatility of asset price) 
r = a constant risk-free interest rate 
 
Note: European option gives the right but not the obligation to buy one unit of the underlying asset at a future date (called exercise 
date or maturity date), at a price called exercise price.  



II.2.The 2D Black-Scholes model 
 
 
Let us assume now the European call options on a basket of two assets ,x y with mean tendencies 
(or expected rates of returns) ,iμ 2,1=i  , volatilities  iσ   and correlation  .ρ   We assume that  ,x y   are 
governed by stochastic processes of the form: 
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The option  u   with pay-off  ),( yxuT   at maturity  T   will satisfy a two-dimensional Black-Scholes 
partial differential equation in  R

2  0,T :  

ut  1xux  2yuy  1
2 1

2x 2u2x  1
2 2

2y2u2y  12xyuxy − ku  0, k  const.
  (II.2) 

ux,y,T  uTx,y  
 

Remark: (II.2) = (I.1) with: 
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Lie symmetries analysis: 
 

• Lie symmetry operator: 
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- As ,= arbitrary functions, we deal with an infinite number of symmetry operators.  
- The action of  U   can be split in various sectors, depending on the concrete form of ,. 
 

• Solving the system (I.2) we come to the following general solution: 
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The algebra of the Lie operators 
  
The previous results suggest that we may decompose the general Lie operator in the form 

 X  X  X,   
 where: 

X  ∂
∂t 

c3x
2

2 lnx − 1 lny  xc1 t  c2 ∂
∂x 

−c3y
1

1 lny − 2 lnx  yc4 t  c5 ∂
∂y  x,y, tu ∂

∂u

X   ∂
∂u  

Accordingly, the Lie algebra possesses a natural structure that may be decomposed into a direct 
sum: 

      X ⊕ X   
where  Λ   consists in all the operators from    with  0=ω   and  ωΛ   is the set of all the operators 
from    with  .0... 621 ==== ccc   
More precisely, 

  t,x,y ∂
∂u ∣  solution of (ref: 1.BS)

 
 
 



The infinite dimensional vector space of the infinitesimal symmetries is spanned by the following 
operators: 
 

X1  ∂
∂t

X2  xt ∂
∂x  1

1 22 21 − 2
2 2 lnx − 12 lny 

t
2 2 2 1 2 − 21 − 12 2 2 − 22 u ∂

∂u  
 

X3  x ∂
∂x  

 
X4  x − 1

2
x lny  x lnx ∂

∂x  2
1

y lnx − y lny ∂
∂y 

21 − 1 2 lny − 22 − 2 2 lnx
212

u ∂
∂u  

 
X5  yt ∂

∂y  1
1 22 21 − 2

1 2 lny − 12 lnx 

t
2 1 2 2 2 − 22 − 12 1 2 − 21 u ∂

∂u  
 

X6  y ∂
∂y , X7  u ∂

∂u , X  t,x,y ∂
∂u  

 



 
The non-vanishing commutation relations:  
 

X1 ,X2  X3  k 3  k 4X7 , X1 ,X5  X6  k 6  k 7X7 ,

X2 ,X3  −k 1X7 , X2 ,X4  X2  k 9X5 , X2 ,X6  −k 2X7 ,

X3 ,X4  X3  k 9X6  k 10X7 , X3 ,X5  k 2X7 ,

X4 ,X5  X5 − k 8X2 , X4 ,X6  −k 8X3  X6 − k 11X7 ,

X5 ,X6  −k 5X7  
 
In addition, when we take into consideration the generator  X,   we obtain the following non-
vanishing relations: 
 

X1 ,X  Xt , X2 ,X  Xxtx−k1 ln xk2 ln ytk3k4 , X3 ,X  Xxx ,  
 

X4 ,X  Xxk8x ln yx ln xxk9y ln x−y ln y−k10 ln xk11 ln y,  
 

X5 ,X  Xyty−k5 ln yk2 ln xtk6k7 , X6 ,X  Xyy , X7 ,X  X−  



II.3. Invariant solutions for the model 
 
 Invariant solutions generated by one dimensional subalgebras 
 
Let us start by the generator: 

X1  ∂
∂t  x ∂

∂x  u ∂
∂u  

The functionally independent invariants of this subgroup are found by integrating the characteristic 
equations: 

dt
1  dx

x 
dy
0  du

u  
and are given by the expressions: 

I1  y, I2  t − lnx, I3  u
x  

The invariant solution may be expressed in the form  I3   1I1 , I2,   or 
u1  x 1y, z, where z  t − lnx  

Substituting into equation we obtain, for  1y, z,   the partial differential equation of second order: 
1 2

2 2z
1 

2 2

2 y22y
1 − 12yzy

1  1 − 1 −
1 2

2 z
1 

2  12yy
1  1 − k 1  0  

For:  1  2  k  1/2,    1  2  1/10,      3/5.    
1y, z  c1  c2y−1  c3e−31/5z

 
The invariant solution for the original variable: 

u1t,x,y  xc1  c2y−1  c3e−31/5tx 31/5   



Other invariant solutions: 
 
 

• 
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• )(xeu tΦ=  with 
 

1 2

2 x 2 ′′  1x ′  1 − k  0
 

 
 



II.4 Inverse symmetry problem and generalized models 
 

Let us choose the infinite-dimensional Lie algebra which corresponds to the following coefficient 
functions of the Lie operator: 
 

.);,,( ,0 .,0 constkyxtkuconstc =+===== ωφηξϕ  
 

It generates a subalgebra with the following basic operators: 
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The largest class of equations which admit (5.1) as Lie algebra is given by:  
 

[ ]

uyxW
k

kuutyxF

uutyxEuyAxDuxCuyAxAu

x

yyxxyt

),(1),,,(

),,,()()()()()( 2
2

21221

−
+

++++=
 

 
To this class belong for example financial model suggested by Jacobs and Jones: 
 

ut  1
2 a2x 2u2x  abcxyuxy  1

2 b2y2u2y  dx ln y
x − ex 3/2  ux 

fy ln g
y − hy1/2  uy − xu

 



 
Conclusions 

 
• Financial mathematical models are a challenge for researchers because of their complexity 

and due to the fact that they cannot be reduced to completely solvable equations. Similarly 
with the study of other dynamical processes, the evolution of the value of financial 
derivatives, stock price patterns, critical crashes etc., are strongly nonlinear and present 
random behaviors.  
 

• We tried to sustain this assertion, using the symmetry method in obtaining a wide class of 
analytical solutions for the  D2   Black-Scholes model, a famous option pricing model.  

 
• In fact we investigated the generalized second order nonlinear equation (2.1), which includes 

many equations coming from finance, as for examples Black-Scholes and Jacobs-Jones 
equations.  

 
• We applied the direct symmetry approach for computing Lie algebra and some classes of 

invariant solutions for the  D2   BS model.  
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