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Motivation

Intuitively, noncommutativity of coordinates introduces through
uncertainty relations the minimal length and the maximal momentum.

This in principle gives a possibility of regularization: of classical solutions
as one cannot reach the singularity; of quantum field theory as we have an
UV cutt-off. How to realize this concretely?

Our motivation:

General: to study noncommutative geometry

Concrete: to understand grounds of renormalizability of the GW model
to study matrix regularizations and matrix geometries beyond UN

Maja Burić (University of Belgrade) Renormalizability of a noncommutative... M∩Φ 7 3 / 34



Noncommutative scalar field theory

The simplest noncommutative space is given by [xµ, xν ] = iθµν=const.
The field theory on it can be obtained by introducing the Moyal product

χ(x)?φ(x) = e
i
2 θµν∂µ∂′νχ(x)φ(x ′)|x ′→x on the space of functions.

The action for the scalar field theory is then

S =

∫
1

2
∂µφ ? ∂µφ +

µ2
0

2
φ ? φ +

λ

4!
φ ? φ ? φ ? φ.

Though the vertex gets regulated in the UV,∫∫
dp dq dk dl δ(p + q + k + l) cos

k ∧ p

2
cos

l ∧ q

2
φ(p)φ(q)φ(k)φ(l),

new divergences appear in the IR and the theory is not renormalizable.
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Grosse-Wulkenhaar model

However, modified scalar field model of Grosse and Wulkenhaar

S =

∫
1

2
∂µφ ? ∂µφ +

µ2
0

2
φ ? φ +

Ω2

4
(xµxµ) ? φ ? φ +

λ

4!
φ ? φ ? φ ? φ

is fully renormalizable.

Added is the oscillator potential term. It yields an extra symmetry (LS
duality); it confines the scalar field; it breaks translation invariance.

A proof of renormalizability can be done in the matrix base, where
coordinates xµ are represented by ∞×∞ matrices: calculations are done
for n × n matrices and then the n →∞ limit is taken.

Is this a matrix regularization of scalar field theory?

Maja Burić (University of Belgrade) Renormalizability of a noncommutative... M∩Φ 7 5 / 34



Questions

What is the origin of renormalizability: Langmann-Szabo duality,
confinement through the potential, or a specific matrix regularization?

How to implement the idea to a gauge model that is, how to make it
compatible with gauge symmetry?
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There are various attempts to anwer these questions

D. N. Blaschke, E. Kronberger, R. I. P. Sedmik and M. Wohlgenannt,
[arXiv:1004.2127 [hep-th]].

A. de Goursac, [arXiv:0710.1162 [hep-th]].

H. Grosse and M. Wohlgenannt, [hep-th/0703169].

A. de Goursac, J. C. Wallet and R. Wulkenhaar, [arXiv:0803.3035
[hep-th]].

D. N. Blaschke, H. Grosse and M. Schweda, [arXiv:0705.4205
[hep-th]].

D. N. Blaschke, H. Grosse, E. Kronberger, M. Schweda and
M. Wohlgenannt, [arXiv:0912.3642 [hep-th]].

D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and
M. Wohlgenannt, [arXiv:0804.1914 [hep-th]].

D. N. Blaschke, A. Rofner, M. Schweda and R. I. P. Sedmik,
[arXiv:0901.1681 [hep-th]].
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Heisenberg algebra

A matrix base on the Moyal space is given through the basis of harmonic
oscillator in which the position algebra [x , y ] = i is represented by infinite
matrices

x =
1
√

2

0BBBBBBBB@

0 1 0 . . . .

1 0
√

2 . . . .

0
√

2 0 . . . .
. . . . . . .
. . . . 0

√
n − 1 .

. . . .
√

n − 1 0 .
. . . . . . .

1CCCCCCCCA

y =
i
√

2

0BBBBBBBB@

0 −1 0 . . . .

1 0 −
√

2 . . . .

0
√

2 0 . . . .
. . . . . . .
. . . . 0 −

√
n − 1 .

. . . .
√

n − 1 0 .
. . . . . . .

1CCCCCCCCA
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We can truncate to finite n × n matrices. This changes the commutation
relation to [x , y ] = i(1− z)

x =
1
√

2

0BBBBBB@

0 1 0 . . .

1 0
√

2 . . .

0
√

2 0 . . .
. . . . . .
. . . . 0

√
n − 1

. . . .
√

n − 1 0

1CCCCCCA

y =
i
√

2

0BBBBBB@

0 −1 0 . . .

1 0 −
√

2 . . .

0
√

2 0 . . .
. . . . . .
. . . . 0 −

√
n − 1

. . . .
√

n − 1 0

1CCCCCCA

z = n

0BBBBB@
0 0 0 . . .
0 0 0 . . .
0 0 0 . . .
. . . . . .
. . . . 0 0
. . . . 0 1

1CCCCCA
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Truncated Heisenberg algebra

or more precisely, to a quadratic algebra. Introducing mass parameters µ
and µ̄ and dimensionless ε, we define the truncated Heisenberg algebra:

[µx , µy ] = iε(1− µ̄z)

[µx , µ̄z ] = iε(µy µ̄z + µ̄z µy)

[µy , µ̄z ] = −iε(µx µ̄z + µ̄z µx).

It can be considered as a 3-dimensional noncommutative space.

ε = 0 is the ‘commutative limit’

µ̄ = 0 is a contraction to the Heisenberg algebra; on the level of
representations, it is a weak limit. Alternatively, it is a 2-dimensional
‘subspace’ z = 0

for ε = 1, µ̄ = µ the algebra has finite representations
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Matrix geometries

Every finite matrix algebra is a smooth noncommutative space, that is, it
can be endowed with diffferential structure. But as xµxν 6= xνxµ, we also
have

xµdxν 6= dxνxµ

dxµdxν 6= −dxνdxµ.

The last two commutation rules do not follow automatically from the
commutator [xµ, xν ] but have to be defined.

The key ingredient in the matrix case is that
derivations = commutators with momenta:

eαφ = [pα, φ ].

These derivations are inner: momenta belong to the same matrix algebra.
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Madore frames

The first ingredient of geometry are derivations eα that is momenta pα.

The second ingredient are dual frame 1-forms θα: θα(eβ) = δα
β . We

assume that [φ, θα] = 0.

The differential d is defined as dφ = (eαφ) θα.

The next assumption is that metric is constant in the frame basis,
gαβ = g(θα ⊗ θβ) = ηαβ .

In addition, all structures are assumed to be linear.

One can proceed quite straightforwardly and define linear connection
ωα

β = ωα
γβθγ , curvature Ωα

β = dωα
β + ωα

γωγ
β and so on.

However, constraints as d2 = 0 or d [φ, θα] = 0 are not automatically
satisfied and have to be imposed separately: this makes the construction
somewhat rigid. Hermiticity is also nontrivial.
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Geometry of the truncated Heisenberg space

For the truncated Heisenberg algebra we introduce momenta as

εp1 = iµ2y , εp2 = −iµ2x , εp3 = iµ(µz − 1

2
)

and thus we obtain a differential structure. Momenta p1 and p2 are the
same as in the Heisenberg algebra. We fix the linear connection and
calculate the curvature:

connection : ω12 = −ω21 = µ (
1

2
− 2µz) θ3

ω13 = −ω31 =
µ

2
θ2 + 2µ2x θ3

ω23 = −ω32 = −µ

2
θ1 + 2µ2y θ3

curvature scalar: R = 11
4 µ2 − 2µ2(µz − 1

2)− 4µ4(x2 + y2)
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Scalar field

Since the curvature scalar is quadratic, one recognizes easily that the GW
action can be understood as the action for scalar field on a curved space

S =

∫
1

2
∂αφ ∂αφ +

M2

2
φ2 − ξ

2
Rφ2 +

Λ

4!
φ4,

after dimensional reduction to z = 0.

This is nice because it indicates that perhaps the GW model is geometric,
and that the geometry involved is that of a finite matrix space. Is it
possible to obtain a gauge theory too? What are its renormalization
properties?
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Gauge fields

The noncommutative U1 gauge fields in this formalism are defined as on a
commutative space. The vector potential is a 1-form, the field strength is
a 2-form:

A = Aαθα, F = dA + A2 = 1
2 Fαβθαθβ.

But as 1-forms are noncommuting, {θα, θβ} = 2iεQαβ
γδθ

γθδ, we have

Fαβ = e[αAβ] − AγCγ
αβ + [Aα,Aβ] + 2iε(eδAγ)Qδγ

αβ + 2iεAδAγQδγ
αβ

Qαβ
γδ 6= 0 only when the momentum algebra is quadratic.

The Yang-Mills action is (with additional details which depend on the
definition of volume form and Hodge dual)

SYM =
1

4

∫
FαβFαβ .
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Covariant coordinates

When calculus is based on inner derivations there is a special 1-form θ,
θ = −pαθα invariant under the gauge group. The difference between A
and θ, Xα = pα + Aα transforms in the adjoint representation: Xα are
called the covariant coordinates.

The field strength expressed in covariant coordinates is

Fαβ = 2Pγδ
αβXγXδ − F γ

αβXγ −
1

iε
Kαβ .

In particular if momenta are the generators of a Lie group this becomes

Fαβ = [Xα,Xβ]− Cγ
αβXγ

and the Yang-Mills action obtains a form known from matrix models.
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Reduced Yang-Mills action

On subspace z = 0 we have p3 = − iµ
2ε , e3 = 0 and A3 transforms as a

scalar field in the adjoint representation. We denote

A3 = φ, A1 = A1, A2 = A2

Then

F12 = F12 − µφ = [X1,X2] +
iµ2

ε
− µφ

F13 = D1φ− iε{p2 + A2, φ} = [X1, φ]− iε{X2, φ}

F23 = D2φ + iε{p1 + A1, φ} = [X2, φ] + iε{X1, φ}.

We derive after dimensional reduction the Yang-Mills action of our model

SYM =
1

2
Tr ((1− ε2)(F12)

2 − 2(1− ε2)µF12φ + (5− ε2)µ2φ2 + 4iεF12φ
2

+ (D1φ)2 + (D2φ)2 − ε2{p1 + A1, φ}2 − ε2{p2 + A2, φ}2).

Maja Burić (University of Belgrade) Renormalizability of a noncommutative... M∩Φ 7 17 / 34



Chern-Simons action

The classical YM equations of motion have two simple vacua:

A1 = 0, A2 = 0, φ = 0,

X1 = 0, X2 = 0, X3 = 0.

The first can be used in quantization; the second vacuum is stable when
we add the Chern-Simons action:

SCS =

∫
X3 =

∫
(3− ε2)(F12 −

iµ2

ε
)φ +

2iε

3

(
(p1 + A1)

2 + (p2 + A2)
2
)
(φ− iµ

2ε
)

The BRST invariance of the quantum action with the gauge fixing term of
the form G = eαAα = ∂1A

1 + ∂2A
2 can be straightforwardly verified.
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Quantization

We fix the gauge and quantize the Yang-Mills reduced action, using as
vacuum the trivial one, Aα = 0, φ = 0.

The action contains two interacting fields: the scalar field φ is of the GW
type; its mixing with the gauge field Aα occurs even in the kinetic part.

Denoting a = 1− ε2 we have:
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Gauge fixed action

Kinetic term

Skin = −1

2

∫
aAα�Aα + 2aµεαβ(∂αAβ)φ

+ φ�φ− (4 + a)µ2φ2 − 4µ4xαxαφ2 + 2c̄ �c

Interaction

Sint = −1

2

∫
4εεαβ(∂αAβ + iAα ? Aβ) ? φ2 − 2i(∂αφ)[Aα ?, φ]

+2iaµεαβAα ? Aβφ− 2iaεαβ∂αAβεγδA
γ ? Aδ + a(εαβAα ? Aβ)2

+[Aα
?, φ][Aα ?, φ]− ε2{Aα

?, φ}{Aα ?, φ}+ 2µ2εεαβ{xα ?, φ}{Aβ ?, φ}

−i c̄∂α[Aα ?, c]
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Propagators

To obtain the propagator we treat Aα and φ as doublet of fields

S ′kin = −1

2

∫ (
Aµ φ

)( a�δµν −aµεµζ∂
ζ

aµενη∂η K−1 − aµ2

)(
Aν

φ

)

and for the kinetic operator we get

G =

( 1
a�−1δµν − µ2�−1εµζ∂

ζKενη∂η�−1 −µ�−1εµζ∂
ζK

µKενη∂η�−1 K

)

where K is the so-called Mehler kernel, the propagator of the scalar field in
the harmonic oscillator potential.
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Mehler kernel

By definition

K−1(x , y) = (�− 4µ4xαxα − 4µ2)δ2(x − y).

The inverse can be found explicitly in the parameter form in position and
in momentum space. In 2 dimensions

K (p, q) = − π

4µ4

∫ ∞

0

ω dτ

sinhωτ
e
− 1

8µ2

(
(p+q)2 coth ωτ

2
+(p−q)2 tanh ωτ

2

)
−ωτ

where the last term in the exponent is related to the mass of the field;
we have ωτ = (µ2

0/4µ2) ωτ .

When one introduces dimensionless parameter α = ωτ or ξ = coth α
2

K (p, q) = − π

4µ4

∫ ∞

1

dξ

ξ

ξ − 1

ξ + 1
e
− 1

8µ2

(
(p+q)2ξ+(p−q)2 1

ξ

)
.
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Clearly the translation invariance is broken as we have dependence on both
p + q and p − q; in the limit ω → 0:

K (p, q)|ω→0 = − (2π)2

p2 + µ2
0

δ2(p + q).

Field contractions are given by

φ(k)φ(l) ≡ K (k, l),

Aσ(k)φ(l) = −iµ
εσβkβ

k2
K (k, l),

φ(k)Aσ(l) = −iµK (k, l)
εσβ lβ

l2
,

Aρ(k)Aσ(l) = − (2π)2

a

δρσ

k2
δ(k + l) + (−iµ)2

ερνkν

k2
K (k, l)

εστ lτ

l2
,

c̄(k)c(l) = − (2π)2

k2
δ(k + l) .
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Vertices

One can define Feynman rules for vertices straigforwardly; we have ten of
them:

(1)
2iε

(2π)4

Z
dp dq dk δ(p + q + k) cos

k ∧ q

2
ερσpρAσ(p)φ(q)φ(k)

(2)
2i

(2π)4

Z
dp dq dk δ(p + q + k) sin

q ∧ k

2
pρφ(p)Aρ(k)φ(q)

(3)
−4iµ2ε

(2π)4

Z
dp dq dk δ(p + q + k) cos

k ∧ q

2
ερσ

∂φ(p)

∂pσ
Aρ(k)φ(q)

...

(9)
2ε

(2π)6

Z
dp dq dk dl δ(p + q + k + l) sin

q ∧ p

2
cos

l ∧ k

2
ερσAρ(p)Aσ(q)φ(k)φ(l)

(10)
a

2(2π)6

Z
dp dq dk dl δ(p + q + k + l) sin

q ∧ p

2
sin

l ∧ k

2
ερσAρ(p)Aσ(q)ελτAλ(k)Aτ (l).
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One-loop corrections: Tadpoles

Tadpoles T (r) = −〈φ(r)Sint〉 and Tµ(r) = −〈Aµ(r)Sint〉 do not vanish.
The corresponding diagrams are

Tν(r) = −iµ
r̃ν
r2

T (r) + Bν(r)

T (r) =
2µ

(2π)4

∫
dp dq dk δ(p + q + k)

×
(
ε cos

p ∧ q

2
(1 + 2µ2 pσ

p2

∂

∂qσ
) + sin

q ∧ p

2

p · q̃
p2q2

)
K(r , p, q, k),
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Tadpoles

with

Bµ(r) =
i

(2π)2a

∫
dp dq δ(p + q − r)

×
(
2ε cos

p ∧ q

2

εµα

r2
(rα − 2µ2 ∂

∂pα
) + sin

q ∧ p

2
(
2pµ

r2
+ aµ2 r̃µ

r2

p · q̃
p2q2

)
)

K (p, q)

We introduced the cyclic product of two Mehler kernels

K(r , p, q, k) = K (r , p)K (q, k) + K (r , q)K (p, k) + K (r , k)K (p, q).

There are two nontrivial momentum and two parameter integrations in
the final expressions, relatively difficult to analyze.
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Tadpole divergences

To extract divergences we amputate the external leg(
τµ(s)

τ(s)

)
=

1

(2π)2

∫
dr G−1(s,−r)

(
Tν(r)

T (r)

)

and calculate the divergence. We obtain

τµ(s) = 4iµ2 s̃µ

s4
e
− s2

4µ2

τ(s) = − 1

µ
e

s2

4µ2

(
E0(

s2

2µ2
)− E1(

s2

2µ2
)
)

The tadpole is regular in the UV and singular in the IR; En are
exponential integrals.
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Counterterms

To obtain the corresponding terms in the effective action we calculate∫
ds τµ(s)Aµ(s),

∫
ds τ(s)φ(s)

and extract the divergent part. Expanding φ and Aµ in Taylor series to
find divergence we obtain only two infinite contributions at one loop:∫

dx φ,

∫
dx εαβ xα ? Aβ.

Divergences are logarithmic.
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One-loop corrections: Propagators

Propagator corrections are given by

Pφ(r)φ(s) ≡ P(r , s) = −〈φ(r)φ(s)Sint〉

Pφ(r)Aµ(s) ≡ Pµ(r , µs) = Pµ(µs, r) = −〈φ(r)Aµ(s)Sint〉

PAν(r)Aµ(s) ≡ Pνµ(νr , µs) = −〈Aν(r)Aµ(s)Sint〉.
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Propagator divergences

In a similar way we calculate one loop contributions to propagators,
everything is just much longer.

As before we define amputated graphs Π = G−1PG−1

Using the amputated graphs we calculate the divergences in the effective
action, that is counterterms

∫
φΠφ,

∫
φΠµAµ, etc.
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For the amputated 2-point function Πρ(r , s) for example we obtain

2iµ

(2π)2

Z
dk dl δ(k + l − r − s) cos

s ∧ l

2
K(k, l)

`4k̃ρ

k2
cos

r ∧ k

2
−

kρ

k2
sin

r ∧ k

2

´
=

i(2π)4

4µ

1

u2

Z ∞

1

dξ

(ξ + 1)2
e
− u2

4µ2 ξ
“
(4− ξ)ũρ cos

u ∧ v

4
+ (4ξ − 1)uρ sin

u ∧ v

4

”
−

i(2π)4

4µ

Z ∞

1
dξ

ξ − 1

ξ + 1
e
− 1

8µ2 (u2+v2)ξ 1

(u − ξv)2
1

(u − ξv)2

×
“

cos
u ∧ v

2

`
(4ũρ − ξṽρ)(u2 − ξ2v2) + 2(uρ − 4ξvρ)u · ξṽ

´
+sin

u ∧ v

2

`
(uρ − 4ξvρ)(u2 − ξ2v2)− 2(4ũρ − ξvρ)u · ξṽ

´”
where u = r + s, v = r − s are the so-called ‘short’ and ‘long’ variable.
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Propagator divergences

We obtain that only three terms in the effective action which are, again
logarithmically, divergent. They are∫

dx Aα ? Aα,

∫
dx φ ? φ,

∫
dx εαβ {xα ?, Aβ} ? φ.

This result has to be completed with one-loop second-order propagator
corrections.
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Discussion

Some counterterms which we obtained are not present in the classical
action. Notably, the tadpoles do not vanish.

There are two ways to understand these terms. One possibility is that
the trivial vacuum φ = 0, Aα = 0 is unstable under quantization, and
that the quantum vacuum has the form

φ = α, Aα = βεαβ xβ

analogous to the second of the classical vacua.

The second possibility is that all counterterms add up to
Chern-Simons action.

Most likely, divergences indicate that the theory has to be fully LS
dual in order to be renormalizable.

Maja Burić (University of Belgrade) Renormalizability of a noncommutative... M∩Φ 7 33 / 34



Outlook

Corrections to vertices: this will help to decide whether the origin of
divergences is a shift of the vacuum or the Chern-Simons term.

A systematic way to quantify divergences in the parameter integrals.

If the model proves renormalizable, this result will mean that the
correct regularization is matrix & geometrical: defined using the
geometry of the underlying matrix space.

The additional symmetry, Langmann-Szabo duality, seems to play a
special role.

Maja Burić (University of Belgrade) Renormalizability of a noncommutative... M∩Φ 7 34 / 34


	Motivation
	Matrix geometries
	Gauge Fields
	Quantization
	One-loop corrections

