Renormalizability of a noncommutative gauge theory

Maja Burić, University of Belgrade
arXiv: 1203.3016, 1003.2284
$\mathrm{M} \cap \Phi$ 7, September 2012, Belgrade

Outline

(1) Motivation
(2) Matrix geometries
(3) Gauge Fields
4) Quantization
(5) One-loop corrections

Motivation

Intuitively, noncommutativity of coordinates introduces through uncertainty relations the minimal length and the maximal momentum.
This in principle gives a possibility of regularization: of classical solutions as one cannot reach the singularity; of quantum field theory as we have an UV cutt-off. How to realize this concretely?

Our motivation:
General: to study noncommutative geometry
Concrete: to understand grounds of renormalizability of the GW model to study matrix regularizations and matrix geometries beyond U_{N}

Noncommutative scalar field theory

The simplest noncommutative space is given by $\left[x^{\mu}, x^{\nu}\right]=i \theta^{\mu \nu}=$ const. The field theory on it can be obtained by introducing the Moyal product $\chi(x) \star \phi(x)=\left.e^{\frac{i}{2} \theta^{\mu \nu} \partial_{\mu} \partial_{\nu}^{\prime}} \chi(x) \phi\left(x^{\prime}\right)\right|_{x^{\prime} \rightarrow x}$ on the space of functions.

The action for the scalar field theory is then

$$
\mathcal{S}=\int \frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{\mu_{0}^{2}}{2} \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi .
$$

Though the vertex gets regulated in the UV,

$$
\iint d p d q d k d l \delta(p+q+k+l) \cos \frac{k \wedge p}{2} \cos \frac{l \wedge q}{2} \phi(p) \phi(q) \phi(k) \phi(I)
$$

new divergences appear in the IR and the theory is not renormalizable.

Grosse-Wulkenhaar model

However, modified scalar field model of Grosse and Wulkenhaar

$$
\mathcal{S}=\int \frac{1}{2} \partial_{\mu} \phi \star \partial^{\mu} \phi+\frac{\mu_{0}^{2}}{2} \phi \star \phi+\frac{\Omega^{2}}{4}\left(x^{\mu} x_{\mu}\right) \star \phi \star \phi+\frac{\lambda}{4!} \phi \star \phi \star \phi \star \phi
$$

is fully renormalizable.
Added is the oscillator potential term. It yields an extra symmetry (LS duality); it confines the scalar field; it breaks translation invariance.

A proof of renormalizability can be done in the matrix base, where coordinates x^{μ} are represented by $\infty \times \infty$ matrices: calculations are done for $n \times n$ matrices and then the $n \rightarrow \infty$ limit is taken.

Is this a matrix regularization of scalar field theory?

Questions

- What is the origin of renormalizability: Langmann-Szabo duality, confinement through the potential, or a specific matrix regularization?
- How to implement the idea to a gauge model that is, how to make it compatible with gauge symmetry?

There are various attempts to anwer these questions

- D. N. Blaschke, E. Kronberger, R. I. P. Sedmik and M. Wohlgenannt, [arXiv:1004.2127 [hep-th]].
- A. de Goursac, [arXiv:0710.1162 [hep-th]].
- H. Grosse and M. Wohlgenannt, [hep-th/0703169].
- A. de Goursac, J. C. Wallet and R. Wulkenhaar, [arXiv:0803.3035 [hep-th]].
- D. N. Blaschke, H. Grosse and M. Schweda, [arXiv:0705.4205 [hep-th]].
- D. N. Blaschke, H. Grosse, E. Kronberger, M. Schweda and M. Wohlgenannt, [arXiv:0912.3642 [hep-th]].
- D. N. Blaschke, F. Gieres, E. Kronberger, M. Schweda and M. Wohlgenannt, [arXiv:0804.1914 [hep-th]].
- D. N. Blaschke, A. Rofner, M. Schweda and R. I. P. Sedmik, [arXiv:0901.1681 [hep-th]].

Heisenberg algebra

A matrix base on the Moyal space is given through the basis of harmonic oscillator in which the position algebra $[x, y]=i$ is represented by infinite matrices

$$
\begin{aligned}
& x=\frac{1}{\sqrt{2}}\left(\begin{array}{ccccccc}
0 & 1 & 0 & . & . & . & . \\
1 & 0 & \sqrt{2} & . & . & . & . \\
0 & \sqrt{2} & 0 & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & 0 & \sqrt{n-1} & . \\
. & . & . & . & \sqrt{n-1} & 0 & . \\
. & . & . & . & . & . & .
\end{array}\right) \\
& y=\frac{i}{\sqrt{2}}\left(\begin{array}{ccccccc}
0 & -1 & 0 & . & . & . & . \\
1 & 0 & -\sqrt{2} & . & . & . & \cdot \\
0 & \sqrt{2} & 0 & . & . & . & . \\
. & . & . & . & . & . & \cdot \\
. & . & . & . & 0 & -\sqrt{n-1} & \cdot \\
. & . & . & . & \sqrt{n-1} & 0 & \cdot \\
. & . & . & . & . & . & .
\end{array}\right)
\end{aligned}
$$

We can truncate to finite $n \times n$ matrices. This changes the commutation relation to $[x, y]=i(1-z)$

$$
\begin{aligned}
& x=\frac{1}{\sqrt{2}}\left(\begin{array}{cccccc}
0 & 1 & 0 & . & . & . \\
1 & 0 & \sqrt{2} & \cdot & . & . \\
0 & \sqrt{2} & 0 & . & . & . \\
. & \cdot & . & . & . & . \\
. & \cdot & \cdot & \cdot & 0 & \sqrt{n-1} \\
. & \cdot & . & \cdot & \sqrt{n-1} & 0
\end{array}\right) \\
& y=\frac{i}{\sqrt{2}}\left(\begin{array}{cccccc}
0 & -1 & 0 & . & . & . \\
1 & 0 & -\sqrt{2} & \cdot & \cdot & . \\
0 & \sqrt{2} & 0 & . & . & . \\
. & . & . & . & . & . \\
. & . & \cdot & \cdot & 0 & -\sqrt{n-1} \\
. & . & . & \cdot & \sqrt{n-1} & 0
\end{array}\right) \\
& z=n\left(\begin{array}{cccccc}
0 & 0 & 0 & . & . & . \\
0 & 0 & 0 & . & . & . \\
0 & 0 & 0 & . & . & . \\
. & . & . & . & . & . \\
. & . & . & . & 0 & 0 \\
. & . & . & . & 0 & 1
\end{array}\right)
\end{aligned}
$$

or more precisely, to a quadratic algebra. Introducing mass parameters μ and $\bar{\mu}$ and dimensionless ϵ, we define the truncated Heisenberg algebra:

$$
\begin{aligned}
{[\mu x, \mu y] } & =i \epsilon(1-\bar{\mu} z) \\
{[\mu x, \bar{\mu} z] } & =i \epsilon(\mu y \bar{\mu} z+\bar{\mu} z \mu y) \\
{[\mu y, \bar{\mu} z] } & =-i \epsilon(\mu x \bar{\mu} z+\bar{\mu} z \mu x) .
\end{aligned}
$$

It can be considered as a 3-dimensional noncommutative space.

- $\epsilon=0$ is the 'commutative limit'
- $\bar{\mu}=0$ is a contraction to the Heisenberg algebra; on the level of representations, it is a weak limit. Alternatively, it is a 2 -dimensional 'subspace' $z=0$
- for $\epsilon=1, \bar{\mu}=\mu$ the algebra has finite representations

Matrix geometries

Every finite matrix algebra is a smooth noncommutative space, that is, it can be endowed with diffferential structure. But as $x^{\mu} x^{\nu} \neq x^{\nu} x^{\mu}$, we also have

$$
\begin{aligned}
& x^{\mu} d x^{\nu} \neq d x^{\nu} x^{\mu} \\
& d x^{\mu} d x^{\nu} \neq-d x^{\nu} d x^{\mu} .
\end{aligned}
$$

The last two commutation rules do not follow automatically from the commutator $\left[x^{\mu}, x^{\nu}\right.$] but have to be defined.

The key ingredient in the matrix case is that derivations = commutators with momenta:

$$
e_{\alpha} \phi=\left[p_{\alpha}, \phi\right] .
$$

These derivations are inner: momenta belong to the same matrix algebra.

Madore frames

The first ingredient of geometry are derivations e_{α} that is momenta p_{α}.
The second ingredient are dual frame 1-forms $\theta^{\alpha}: \theta^{\alpha}\left(e_{\beta}\right)=\delta_{\beta}^{\alpha}$. We assume that $\left[\phi, \theta^{\alpha}\right]=0$.

The differential d is defined as $d \phi=\left(e_{\alpha} \phi\right) \theta^{\alpha}$.
The next assumption is that metric is constant in the frame basis, $g^{\alpha \beta}=g\left(\theta^{\alpha} \otimes \theta^{\beta}\right)=\eta^{\alpha \beta}$.

In addition, all structures are assumed to be linear.
One can proceed quite straightforwardly and define linear connection $\omega^{\alpha}{ }_{\beta}=\omega^{\alpha}{ }_{\gamma \beta} \theta^{\gamma}$, curvature $\Omega^{\alpha}{ }_{\beta}=d \omega^{\alpha}{ }_{\beta}+\omega^{\alpha}{ }_{\gamma} \omega^{\gamma}{ }_{\beta}$ and so on.

However, constraints as $d^{2}=0$ or $d\left[\phi, \theta^{\alpha}\right]=0$ are not automatically satisfied and have to be imposed separately: this makes the construction somewhat rigid. Hermiticity is also nontrivial.

Geometry of the truncated Heisenberg space

For the truncated Heisenberg algebra we introduce momenta as

$$
\epsilon p_{1}=i \mu^{2} y, \quad \epsilon p_{2}=-i \mu^{2} x, \quad \epsilon p_{3}=i \mu\left(\mu z-\frac{1}{2}\right)
$$

and thus we obtain a differential structure. Momenta p_{1} and p_{2} are the same as in the Heisenberg algebra. We fix the linear connection and calculate the curvature:

$$
\text { connection: } \quad \begin{aligned}
& \omega_{12}=-\omega_{21} \\
&=\mu\left(\frac{1}{2}-2 \mu z\right) \theta^{3} \\
& \omega_{13}=-\omega_{31}=\frac{\mu}{2} \theta^{2}+2 \mu^{2} x \theta^{3} \\
& \omega_{23}=-\omega_{32}=-\frac{\mu}{2} \theta^{1}+2 \mu^{2} y \theta^{3}
\end{aligned}
$$

curvature scalar: $\quad R=\frac{11}{4} \mu^{2}-2 \mu^{2}\left(\mu z-\frac{1}{2}\right)-4 \mu^{4}\left(x^{2}+y^{2}\right)$

Scalar field

Since the curvature scalar is quadratic, one recognizes easily that the GW action can be understood as the action for scalar field on a curved space

$$
S=\int \frac{1}{2} \partial_{\alpha} \phi \partial^{\alpha} \phi+\frac{M^{2}}{2} \phi^{2}-\frac{\xi}{2} R \phi^{2}+\frac{\Lambda}{4!} \phi^{4}
$$

after dimensional reduction to $z=0$.

This is nice because it indicates that perhaps the GW model is geometric, and that the geometry involved is that of a finite matrix space. Is it possible to obtain a gauge theory too? What are its renormalization properties?

Gauge fields

The noncommutative U_{1} gauge fields in this formalism are defined as on a commutative space. The vector potential is a 1 -form, the field strength is a 2 -form:

$$
A=A_{\alpha} \theta^{\alpha}, \quad F=d A+A^{2}=\frac{1}{2} F_{\alpha \beta} \theta^{\alpha} \theta^{\beta} .
$$

But as 1-forms are noncommuting, $\left\{\theta^{\alpha}, \theta^{\beta}\right\}=2 i \epsilon Q^{\alpha \beta}{ }_{\gamma \delta} \theta^{\gamma} \theta^{\delta}$, we have

$$
F_{\alpha \beta}=e_{[\alpha} A_{\beta]}-A_{\gamma} C^{\gamma}{ }_{\alpha \beta}+\left[A_{\alpha}, A_{\beta}\right]+2 i \epsilon\left(e_{\delta} A_{\gamma}\right) Q^{\delta \gamma}{ }_{\alpha \beta}+2 i \epsilon A_{\delta} A_{\gamma} Q^{\delta \gamma}{ }_{\alpha \beta}
$$

$Q^{\alpha \beta}{ }_{\gamma \delta} \neq 0$ only when the momentum algebra is quadratic.

The Yang-Mills action is (with additional details which depend on the definition of volume form and Hodge dual)

$$
\mathcal{S}_{Y M}=\frac{1}{4} \int F_{\alpha \beta} F^{\alpha \beta}
$$

Covariant coordinates

When calculus is based on inner derivations there is a special 1-form θ, $\theta=-p_{\alpha} \theta^{\alpha}$ invariant under the gauge group. The difference between A and $\theta, \mathrm{X}_{\alpha}=p_{\alpha}+A_{\alpha}$ transforms in the adjoint representation: X_{α} are called the covariant coordinates.

The field strength expressed in covariant coordinates is

$$
F_{\alpha \beta}=2 P^{\gamma \delta}{ }_{\alpha \beta} \mathrm{X}_{\gamma} \mathrm{X}_{\delta}-F^{\gamma}{ }_{\alpha \beta} \mathrm{X}_{\gamma}-\frac{1}{i \epsilon} K_{\alpha \beta} .
$$

In particular if momenta are the generators of a Lie group this becomes

$$
F_{\alpha \beta}=\left[\mathrm{X}_{\alpha}, \mathrm{X}_{\beta}\right]-C^{\gamma}{ }_{\alpha \beta} \mathrm{X}_{\gamma}
$$

and the Yang-Mills action obtains a form known from matrix models.

Reduced Yang-Mills action

On subspace $z=0$ we have $p_{3}=-\frac{i \mu}{2 \epsilon}, e_{3}=0$ and A_{3} transforms as a scalar field in the adjoint representation. We denote

$$
\mathrm{A}_{3}=\phi, \quad \mathrm{A}_{1}=A_{1}, \quad \mathrm{~A}_{2}=A_{2}
$$

Then

$$
\begin{aligned}
& \mathrm{F}_{12}=F_{12}-\mu \phi=\left[\mathrm{X}_{1}, \mathrm{X}_{2}\right]+\frac{i \mu^{2}}{\epsilon}-\mu \phi \\
& \mathrm{F}_{13}=D_{1} \phi-i \epsilon\left\{p_{2}+A_{2}, \phi\right\}=\left[\mathrm{X}_{1}, \phi\right]-i \epsilon\left\{\mathrm{X}_{2}, \phi\right\} \\
& \mathrm{F}_{23}=D_{2} \phi+i \epsilon\left\{p_{1}+A_{1}, \phi\right\}=\left[\mathrm{X}_{2}, \phi\right]+i \epsilon\left\{\mathrm{X}_{1}, \phi\right\} .
\end{aligned}
$$

We derive after dimensional reduction the Yang-Mills action of our model

$$
\begin{aligned}
\mathcal{S}_{Y M}= & \frac{1}{2} \operatorname{Tr}\left(\left(1-\epsilon^{2}\right)\left(F_{12}\right)^{2}-2\left(1-\epsilon^{2}\right) \mu F_{12} \phi+\left(5-\epsilon^{2}\right) \mu^{2} \phi^{2}+4 i \epsilon F_{12} \phi^{2}\right. \\
& \left.+\left(D_{1} \phi\right)^{2}+\left(D_{2} \phi\right)^{2}-\epsilon^{2}\left\{p_{1}+A_{1}, \phi\right\}^{2}-\epsilon^{2}\left\{p_{2}+A_{2}, \phi\right\}^{2}\right) .
\end{aligned}
$$

Chern-Simons action

The classical YM equations of motion have two simple vacua:

$$
\begin{aligned}
& A_{1}=0, \quad A_{2}=0, \quad \phi=0 \\
& X_{1}=0, \quad X_{2}=0, \quad X_{3}=0
\end{aligned}
$$

The first can be used in quantization; the second vacuum is stable when we add the Chern-Simons action:

$$
\mathcal{S}_{C S}=\int X^{3}=\int\left(3-\epsilon^{2}\right)\left(F_{12}-\frac{i \mu^{2}}{\epsilon}\right) \phi+\frac{2 i \epsilon}{3}\left(\left(p_{1}+A_{1}\right)^{2}+\left(p_{2}+A_{2}\right)^{2}\right)\left(\phi-\frac{i \mu}{2 \epsilon}\right)
$$

The BRST invariance of the quantum action with the gauge fixing term of the form $\mathcal{G}=e_{\alpha} A^{\alpha}=\partial_{1} A^{1}+\partial_{2} A^{2}$ can be straightforwardly verified.

Quantization

We fix the gauge and quantize the Yang-Mills reduced action, using as vacuum the trivial one, $A_{\alpha}=0, \phi=0$.

The action contains two interacting fields: the scalar field ϕ is of the GW type; its mixing with the gauge field A_{α} occurs even in the kinetic part.

Denoting $a=1-\epsilon^{2}$ we have:

Gauge fixed action

Kinetic term

$$
\begin{aligned}
\mathcal{S}_{k i n}=- & \frac{1}{2} \int a A_{\alpha} \square A^{\alpha}+2 a \mu \epsilon^{\alpha \beta}\left(\partial_{\alpha} A_{\beta}\right) \phi \\
& +\phi \square \phi-(4+a) \mu^{2} \phi^{2}-4 \mu^{4} x^{\alpha} x_{\alpha} \phi^{2}+2 \bar{c} \square c
\end{aligned}
$$

Interaction

$$
\begin{aligned}
& \mathcal{S}_{i n t}=-\frac{1}{2} \int 4 \epsilon \epsilon_{\alpha \beta}\left(\partial^{\alpha} A^{\beta}+i A^{\alpha} \star A^{\beta}\right) \star \phi^{2}-2 i\left(\partial_{\alpha} \phi\right)\left[A^{\alpha} \stackrel{\star}{,} \phi\right] \\
& \quad+2 i a \mu \epsilon_{\alpha \beta} A^{\alpha} \star A^{\beta} \phi-2 i a \epsilon_{\alpha \beta} \partial^{\alpha} A^{\beta} \epsilon_{\gamma \delta} A^{\gamma} \star A^{\delta}+a\left(\epsilon_{\alpha \beta} A^{\alpha} \star A^{\beta}\right)^{2} \\
& \quad+\left[A_{\alpha}{ }^{\star}, \phi\right]\left[A^{\alpha}, \phi\right]-\epsilon^{2}\left\{A_{\alpha} \stackrel{\star}{,} \phi\right\}\left\{A^{\alpha} \stackrel{\star}{,} \phi\right\}+2 \mu^{2} \epsilon \epsilon_{\alpha \beta}\left\{x^{\alpha}, \stackrel{\star}{,} \phi\right\}\left\{A^{\beta} \stackrel{\star}{,} \phi\right\} \\
& \quad-i \bar{c} \partial_{\alpha}\left[A^{\alpha}, c\right]
\end{aligned}
$$

To obtain the propagator we treat A_{α} and ϕ as doublet of fields

$$
\mathcal{S}_{k i n}^{\prime}=-\frac{1}{2} \int\left(\begin{array}{ll}
A^{\mu} & \phi
\end{array}\right)\left(\begin{array}{cc}
a \square \delta_{\mu \nu} & -a \mu \epsilon_{\mu \zeta} \partial^{\zeta} \\
a \mu \epsilon_{\nu \eta} \partial^{\eta} & K^{-1}-a \mu^{2}
\end{array}\right)\binom{A^{\nu}}{\phi}
$$

and for the kinetic operator we get

$$
G=\left(\begin{array}{cc}
\frac{1}{a} \square^{-1} \delta_{\mu \nu}-\mu^{2} \square^{-1} \epsilon_{\mu \zeta} \partial^{\zeta} K \epsilon_{\nu \eta} \partial^{\eta} \square^{-1} & -\mu \square^{-1} \epsilon_{\mu \zeta} \partial^{\zeta} K \\
\mu K \epsilon_{\nu \eta} \partial^{\eta} \square^{-1} & K
\end{array}\right)
$$

where K is the so-called Mehler kernel, the propagator of the scalar field in the harmonic oscillator potential.

Mehler kernel

By definition

$$
K^{-1}(x, y)=\left(\square-4 \mu^{4} x_{\alpha} x^{\alpha}-4 \mu^{2}\right) \delta^{2}(x-y) .
$$

The inverse can be found explicitly in the parameter form in position and in momentum space. In 2 dimensions

$$
K(p, q)=-\frac{\pi}{4 \mu^{4}} \int_{0}^{\infty} \frac{\omega d \tau}{\sinh \omega \tau} e^{-\frac{1}{8 \mu^{2}}\left((p+q)^{2} \operatorname{coth} \frac{\omega \tau}{2}+(p-q)^{2} \tanh \frac{\omega \tau}{2}\right)-\omega \tau}
$$

where the last term in the exponent is related to the mass of the field; we have $\omega \tau=\left(\mu_{0}^{2} / 4 \mu^{2}\right) \omega \tau$.

When one introduces dimensionless parameter $\alpha=\omega \tau$ or $\xi=\operatorname{coth} \frac{\alpha}{2}$

$$
K(p, q)=-\frac{\pi}{4 \mu^{4}} \int_{1}^{\infty} \frac{d \xi}{\xi} \frac{\xi-1}{\xi+1} e^{-\frac{1}{8 \mu^{2}}\left((p+q)^{2} \xi+(p-q)^{2} \frac{1}{\xi}\right)} .
$$

Clearly the translation invariance is broken as we have dependence on both $p+q$ and $p-q$; in the limit $\omega \rightarrow 0$:

$$
\left.K(p, q)\right|_{\omega \rightarrow 0}=-\frac{(2 \pi)^{2}}{p^{2}+\mu_{0}^{2}} \delta^{2}(p+q)
$$

Field contractions are given by

$$
\begin{aligned}
& \phi(k) \phi(I) \equiv K(k, I), \\
& A_{\sigma}(k) \phi(I)=-i \mu \frac{\epsilon_{\sigma \beta} k^{\beta}}{k^{2}} K(k, I), \\
& \phi(k) A_{\sigma}(I)=-i \mu K(k, I) \frac{\epsilon_{\sigma \beta} I^{\beta}}{I^{2}}, \\
& A_{\rho}(k) A_{\sigma}(I)=-\frac{(2 \pi)^{2}}{a} \frac{\delta_{\rho \sigma}}{k^{2}} \delta(k+I)+(-i \mu)^{2} \frac{\epsilon_{\rho \nu} k^{\nu}}{k^{2}} K(k, I) \frac{\epsilon_{\sigma \tau} I^{\tau}}{I^{2}}, \\
& \bar{c}(k) c(I)=-\frac{(2 \pi)^{2}}{k^{2}} \delta(k+I) .
\end{aligned}
$$

Vertices

One can define Feynman rules for vertices straigforwardly; we have ten of them:
(1) $\frac{2 i \epsilon}{(2 \pi)^{4}} \int d p d q d k \delta(p+q+k) \cos \frac{k \wedge q}{2} \epsilon_{\rho \sigma} p^{\rho} A^{\sigma}(p) \phi(q) \phi(k)$
(2) $\frac{2 i}{(2 \pi)^{4}} \int d p d q d k \delta(p+q+k) \sin \frac{q \wedge k}{2} p^{\rho} \phi(p) A_{\rho}(k) \phi(q)$
(3) $\frac{-4 i \mu^{2} \epsilon}{(2 \pi)^{4}} \int d p d q d k \delta(p+q+k) \cos \frac{k \wedge q}{2} \epsilon_{\rho \sigma} \frac{\partial \phi(p)}{\partial p_{\sigma}} A^{\rho}(k) \phi(q)$
(9) $\frac{2 \epsilon}{(2 \pi)^{6}} \int d p d q d k d l \delta(p+q+k+I) \sin \frac{q \wedge p}{2} \cos \frac{I \wedge k}{2} \epsilon^{\rho \sigma} A_{\rho}(p) A_{\sigma}(q) \phi(k) \phi(I)$

$$
\begin{equation*}
\frac{a}{2(2 \pi)^{6}} \int d p d q d k d l \delta(p+q+k+l) \sin \frac{q \wedge p}{2} \sin \frac{l \wedge k}{2} \epsilon^{\rho \sigma} A_{\rho}(p) A_{\sigma}(q) \epsilon^{\lambda \tau} A_{\lambda}(k) A_{\tau}(I) \tag{10}
\end{equation*}
$$

One-loop corrections: Tadpoles

Tadpoles $T(r)=-\left\langle\phi(r) \mathcal{S}_{\text {int }}\right\rangle$ and $T_{\mu}(r)=-\left\langle A_{\mu}(r) \mathcal{S}_{\text {int }}\right\rangle$ do not vanish. The corresponding diagrams are

$$
\begin{aligned}
T_{\nu}(r)= & -i \mu \frac{\tilde{r}_{\nu}}{r^{2}} T(r)+\mathbb{B}_{\nu}(r) \\
T(r)= & \frac{2 \mu}{(2 \pi)^{4}} \int d p d q d k \delta(p+q+k) \\
& \times\left(\epsilon \cos \frac{p \wedge q}{2}\left(1+2 \mu^{2} \frac{p_{\sigma}}{p^{2}} \frac{\partial}{\partial q_{\sigma}}\right)+\sin \frac{q \wedge p}{2} \frac{p \cdot \tilde{q}}{p^{2} q^{2}}\right) \mathcal{K}(r, p, q, k),
\end{aligned}
$$

Tadpoles

with

$$
\begin{aligned}
& \mathbb{B}_{\mu}(r)=\frac{i}{(2 \pi)^{2} a} \int d p d q \delta(p+q-r) \\
& \times\left(2 \epsilon \cos \frac{p \wedge q}{2} \frac{\epsilon_{\mu \alpha}}{r^{2}}\left(r^{\alpha}-2 \mu^{2} \frac{\partial}{\partial p_{\alpha}}\right)+\sin \frac{q \wedge p}{2}\left(\frac{2 p_{\mu}}{r^{2}}+a \mu^{2} \frac{\tilde{r}_{\mu}}{r^{2}} \frac{p \cdot \tilde{q}}{p^{2} q^{2}}\right)\right) K(p, q)
\end{aligned}
$$

We introduced the cyclic product of two Mehler kernels

$$
\mathcal{K}(r, p, q, k)=K(r, p) K(q, k)+K(r, q) K(p, k)+K(r, k) K(p, q) .
$$

There are two nontrivial momentum and two parameter integrations in the final expressions, relatively difficult to analyze.

Tadpole divergences

To extract divergences we amputate the external leg

$$
\binom{\tau_{\mu}(s)}{\tau(s)}=\frac{1}{(2 \pi)^{2}} \int d r G^{-1}(s,-r)\binom{T_{\nu}(r)}{T(r)}
$$

and calculate the divergence. We obtain

$$
\begin{aligned}
& \tau_{\mu}(s)=4 i \mu^{2} \frac{\tilde{s}_{\mu}}{s^{4}} e^{-\frac{s^{2}}{4 \mu^{2}}} \\
& \tau(s)=-\frac{1}{\mu} e^{\frac{s^{2}}{4 \mu^{2}}}\left(E_{0}\left(\frac{s^{2}}{2 \mu^{2}}\right)-E_{1}\left(\frac{s^{2}}{2 \mu^{2}}\right)\right)
\end{aligned}
$$

The tadpole is regular in the UV and singular in the IR; E_{n} are exponential integrals.

Counterterms

To obtain the corresponding terms in the effective action we calculate

$$
\int d s \tau_{\mu}(s) A^{\mu}(s), \quad \int d s \tau(s) \phi(s)
$$

and extract the divergent part. Expanding ϕ and A_{μ} in Taylor series to find divergence we obtain only two infinite contributions at one loop:

$$
\int d x \phi, \quad \int d x \epsilon_{\alpha \beta} x^{\alpha} \star A^{\beta} .
$$

Divergences are logarithmic.

One-loop corrections: Propagators

Propagator corrections are given by

$P_{\phi(r) \phi(s)} \equiv P(r, s)=-\left\langle\phi(r) \phi(s) \mathcal{S}_{i n t}\right\rangle$
$P_{\phi(r) A_{\mu}(s)} \equiv P_{\mu}(r, \mu s)=P_{\mu}(\mu s, r)=-\left\langle\phi(r) A_{\mu}(s) \mathcal{S}_{\text {int }}\right\rangle$
$P_{A_{\nu}(r) A_{\mu}(s)} \equiv P_{\nu \mu}(\nu r, \mu s)=-\left\langle A_{\nu}(r) A_{\mu}(s) \mathcal{S}_{i n t}\right\rangle$.

In a similar way we calculate one loop contributions to propagators, everything is just much longer.

As before we define amputated graphs $\Pi=G^{-1} P G^{-1}$

Using the amputated graphs we calculate the divergences in the effective action, that is counterterms $\int \phi \Pi \phi, \int \phi \Pi_{\mu} A^{\mu}$, etc.

For the amputated 2-point function $\Pi_{\rho}(r, s)$ for example we obtain

$$
\begin{aligned}
& \frac{2 i \mu}{(2 \pi)^{2}} \int d k d l \delta(k+I-r-s) \cos \frac{s \wedge I}{2} K(k, I)\left(\frac{4 \tilde{k}_{\rho}}{k^{2}} \cos \frac{r \wedge k}{2}-\frac{k_{\rho}}{k^{2}} \sin \frac{r \wedge k}{2}\right) \\
& =\frac{i(2 \pi)^{4}}{4 \mu} \frac{1}{u^{2}} \int_{1}^{\infty} \frac{d \xi}{(\xi+1)^{2}} e^{-\frac{u^{2}}{4 \mu^{2}} \xi}\left((4-\xi) \tilde{u}_{\rho} \cos \frac{u \wedge v}{4}+(4 \xi-1) u_{\rho} \sin \frac{u \wedge v}{4}\right) \\
& -\frac{i(2 \pi)^{4}}{4 \mu} \int_{1}^{\infty} d \xi \frac{\xi-1}{\xi+1} e^{-\frac{1}{8 \mu^{2}}\left(u^{2}+v^{2}\right) \xi} \frac{1}{(u-\xi v)^{2}} \frac{1}{(u-\xi v)^{2}} \\
& \quad \times\left(\cos \frac{u \wedge v}{2}\left(\left(4 \tilde{u}_{\rho}-\xi \tilde{v}_{\rho}\right)\left(u^{2}-\xi^{2} v^{2}\right)+2\left(u_{\rho}-4 \xi v_{\rho}\right) u \cdot \xi \tilde{v}\right)\right. \\
& \left.\quad+\sin \frac{u \wedge v}{2}\left(\left(u_{\rho}-4 \xi v_{\rho}\right)\left(u^{2}-\xi^{2} v^{2}\right)-2\left(4 \tilde{u}_{\rho}-\xi v_{\rho}\right) u \cdot \xi \tilde{v}\right)\right)
\end{aligned}
$$

where $u=r+s, v=r-s$ are the so-called 'short' and 'long' variable.

We obtain that only three terms in the effective action which are, again logarithmically, divergent. They are

$$
\int d x A_{\alpha} \star A^{\alpha}, \quad \int d x \phi \star \phi, \quad \int d x \epsilon_{\alpha \beta}\left\{x^{\alpha}, A^{\beta}\right\} \star \phi .
$$

This result has to be completed with one-loop second-order propagator corrections.

Discussion

- Some counterterms which we obtained are not present in the classical action. Notably, the tadpoles do not vanish.
- There are two ways to understand these terms. One possibility is that the trivial vacuum $\phi=0, A_{\alpha}=0$ is unstable under quantization, and that the quantum vacuum has the form

$$
\phi=\alpha, \quad A_{\alpha}=\beta \epsilon_{\alpha \beta} x^{\beta}
$$

analogous to the second of the classical vacua.

- The second possibility is that all counterterms add up to Chern-Simons action.
- Most likely, divergences indicate that the theory has to be fully LS dual in order to be renormalizable.

Outlook

- Corrections to vertices: this will help to decide whether the origin of divergences is a shift of the vacuum or the Chern-Simons term.
- A systematic way to quantify divergences in the parameter integrals.
- If the model proves renormalizable, this result will mean that the correct regularization is matrix \& geometrical: defined using the geometry of the underlying matrix space.
- The additional symmetry, Langmann-Szabo duality, seems to play a special role.

