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Abstract

We discuss an interpretation of a simple supersymmetric matrix model with a
double-well potential as two-dimensional type IIA superstrings on a nontrivial
Ramond-Ramond background. We find direct correspondence between single-trace
operators in the matrix model and integrated vertex operators in type IIA theory
by computing various correlation functions in both sides.

1. Introduction

Solvable matrix models for two-dimensional quantum gravity or noncriti-
cal string theory were vigorously investigated around 1990, where a main
motivation was to understand nonperturbative effects in string theory [3].
While this approach has been succeeded for bosonic string theory, little has
been known for superstring theory, in particular which possesses target-
space supersymmetry (SUSY). We would like to consider (solvable) matrix
models describing superstring theory with target-space SUSY. We hope our
analysis helpful to understand nonperturbative dynamics of matrix models
of super Yang-Mills type for critical superstring theory [4].

2. Double-well SUSY matrix model

Ref. [5] discussed a following simple matrix model:

S = Ntr

[
1

2
B2 + iB(ϕ2 − µ2) + ψ̄(ϕψ + ψϕ)

]
, (1)
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where B and ϕ are N × N hermitian matrices, and ψ and ψ̄ are N × N
Grassmann-odd matrices. The action S is invariant under SUSY transfor-
mations generated by Q and Q̄:

Qϕ = ψ, Qψ = 0, Qψ̄ = −iB, QB = 0, (2)

Q̄ϕ = −ψ̄, Q̄ψ̄ = 0, Q̄ψ = −iB, Q̄B = 0, (3)

from which one can see that they are nilpotent: Q2 = Q̄2 = 0. After
integrating out B, we have a scalar potential of a double-well shape: 1

2(ϕ
2−

µ2)2. A large-N saddle point equation for the eigenvalue distribution of the
matrix ϕ: ρ(x) ≡ 1

N tr δ(x− ϕ) reads∫
dy ρ(y) P

1

x− y
+

∫
dy ρ(y) P

1

x+ y
= x3 − µ2x. (4)

Its solution with filling fraction (ν+, ν−) is given by

ρ(x) =

{
ν+
π x

√
(x2 − a2)(b2 − x2) (a < x < b)

ν−
π |x|

√
(x2 − a2)(b2 − x2) (−b < x < −a) (5)

with a =
√
µ2 − 2 and b =

√
µ2 + 2. The filling fractions satisfying ν+ +

ν− = 1 indicate that ν+N (ν−N) eigenvalues are around the right (left)
minimum of the double-well. The solution exists for µ2 > 2. The large-N

free energy and
⟨

1
N trBn

⟩
(n = 1, 2, · · ·) evaluated at the solution turn out

to all vanish. This strongly suggests that the solution preserves SUSY.
Thus, we conclude that the SUSY minima are infinitely degenerate and
parametrized by (ν+, ν−) at large N . Note that the edges of the support a
and b are independent of ν±. It is considered to be a characteristic feature
of SUSY matrix models, not observed in bosonic double-well matrix models
[6].

There exists a solution having support of a single interval x ∈ [−c, c] for
µ2 < 2 [7]:

ρ(x) =
1

2π

(
x2 − µ2 +

c2

2

)√
c2 − x2 (6)

with c =
√

2
3

(
µ2 +

√
µ4 + 12

)1/2
. Positivity of ρ(x) yields the condition

µ2 < 2. This solution gives nonzero values of
⟨

1
N trB

⟩
and of the large-N

free energy, showing that SUSY is broken. We observed that the third
derivative of the free energy with respect to µ2 is not continuous at µ2 = 2.
The transition between the SUSY phase (µ2 > 2) and the SUSY broken
phase (µ2 < 2) is of the third order.

In what follows we will compute various correlation functions at the saddle
point (5) and find new logarithmic critical behavior as µ2 → 2 + 0. Based
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on the result, we will discuss correspondence between the matrix model
and two-dimensional type IIA superstring theory on a nontrivial Ramond-
Ramond (RR) background. The logarithmic critical behavior is somewhat
reminiscent of the c = 1 matrix model which is a matrix quantum me-
chanics of a single matrix variable [8]. The Penner model is known as a
zero-dimensional matrix model exhibiting the same critical behavior as the
matrix quantum mechanics [9]. 1 The partition function is given by

ZPenner =

∫
dN

2
M exp [Nt tr{M + ln(1−M)}] , (7)

where the double scaling limit is taken as n → ∞, t → −1 with N(1 + t)
fixed. It describes noncritical string theory propagating on a two-dimensi-
onal target space: (Liouville direction) × (S1 with self-dual radius). So, it
is expected that our matrix model can be regarded as a SUSY version of
the Penner model and describes two-dimensional superstring theory with
SUSY on the target space (Liouville direction)×(S1 with self-dual radius).
Indeed, two-dimensional type II superstring theory with the identical target
space is constructed [11, 12, 13, 14], where target space SUSY exists only
at the self-dual radius of the circle.

Our matrix model is interpreted as the O(n) model on a random surface
with n = −2, whose critical behavior is described by the c = −2 topological
gravity [15]. The partition function after B, ψ and ψ̄ integrated out is
expressed as a Gaussian one-matrix model by the Nicolai mapping H = ϕ2,
where the H-integration is over the positive definite hermitian matrices, not
over all the hermitian matrices. Ref. [16] discusses that the difference of
the integration region has only effects which are nonperturbative in 1/N ,
and the model can be regarded as the standard Gaussian matrix model at
each order of genus expansion.

The Nicolai mapping changes the operators 1
N trϕ2n (n = 1, 2, · · ·) to regular

operators 1
N trHn. Hence, the behavior of their correlators is expected to

be described by the Gaussian one-matrix (the c = −2 topological gravity)
at least perturbatively in 1/N . However, the operators 1

N trϕ2n+1 (n =

0, 1, 2, · · ·) are mapped to ± 1
N trHn+1/2 that are singular at the origin.

They are not observables in the c = −2 topological gravity, while they are
natural observables as well as 1

N trϕ2n in the original setting (1). In the
next section, we will see that correlation functions among operators

1

N
trϕ2n+1,

1

N
trψ2n+1,

1

N
tr ψ̄2n+1 (n = 0, 1, 2, · · ·) (8)

exhibit logarithmic singular behavior of powers of ln(µ2 − 2) at the planar
topology.

1Also is the normal matrix model [10], which corresponds to c = 1 noncritical strings
on S1 with a general radius.
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In considering correspondence of the matrix model to superstring theory,
the following observation will be helpful. Suppose ψ and ψ̄ are regarded
as target-space fermions in the corresponding superstring theory. Namely,
ψ is interpreted as an operator in the (NS, R) sector and ψ̄ in the (R,
NS) sector in the RNS formalism. Then, under the so-called (−1)FL and
(−1)FR transformations changing the signs of operators in the left-moving
Ramond sector and those in the right-moving Ramond sector respectively,
they transform as

(−1)FL : ψ → ψ, ψ̄ → −ψ̄, (9)

(−1)FR : ψ → −ψ, ψ̄ → ψ̄. (10)

In order for the matrix model action (1) to be invariant under the trans-
formations, B and ϕ should transform as

(−1)FL : B → B, ϕ→ −ϕ, (11)

(−1)FR : B → B, ϕ→ −ϕ. (12)

This indicates that B corresponds to an operator in the (NS, NS) sector,
and ϕ in the (R, R) sector.

3. Correlation functions

3.1. Planar one-point functions

The planar one-point function
⟨

1
N trϕn

⟩
0
(n = 1, 2, · · ·) are computed as⟨

1

N
trϕn

⟩
0
=

∫
dxxnρ(x) (13)

= (ν+ + (−1)nν−)(2 + µ2)n/2F

(
−n
2
,
3

2
, 3;

4

2 + µ2

)
,

where the suffix “0” in the left hand side indicates the planar contribution.
For n even, the expression is reduced to a polynomial of µ2 giving nonsin-
gular behavior as expected from the c = −2 topological gravity. On the
other hand, when µ2 is odd, it exhibits logarithmic singular behavior as
µ2 → 2 + 0:⟨

1

N
trϕ2k+1

⟩
0
∼ (ν+ − ν−)

2k+2

π

(2k + 1)!!

(k + 2)!
ωk+2 lnω (14)

with ω ≡ 1
4(µ

2 − 2). The symbol “∼” denotes equality up to additive less
singular terms. Explicit form for a first few expectation values reads⟨
1

N
trϕ

⟩
0
= (ν+ − ν−)

[
64

15π
+

16

3π
ω +

2

π
ω2 lnω +O(ω2)

]
,



SUSY matrix model for 2D type IIA superstrings 335

⟨
1

N
trϕ3

⟩
0
= (ν+ − ν−)

[
1024

105π
+

128

5π
ω +

16

π
ω2 +

4

π
ω3 lnω +O(ω3)

]
,⟨

1

N
trϕ5

⟩
0
= (ν+ − ν−)

[
8192

315π
+

2048

21π
ω +

128

π
ω2 +

160

3π
ω3 +

10

π
ω4 lnω

+ O(ω4)

]
,

· · · · · · · · · . (15)

Matrix models can be seen as a sort of “lattice models” for string theory. In

the hypergeometric function F
(
−n

2 ,
3
2 , 3;

1
1+ω

)
for n: odd, the logarithmic

singular terms can be regarded as universal parts relevant to “continuum
physics”, whereas polynomials of ω as nonuniversal “lattice artifacts”.

3.2. Eigenvalue distribution with source

In computing higher-point correlators
⟨∏K

i=1
1
N trϕni

⟩
C,0

at the vacuum

with general filling fractions (ν+, ν−), it is useful to reduce them to those
at the vacuum with (ν+, ν−) = (1, 0). We can show⟨

K∏
i=1

1

N
trϕni

⟩(ν+,ν−)

C,0

= (ν+ − ν−)
♯

⟨
K∏
i=1

1

N
trϕni

⟩(1,0)

C,0

(16)

up to K = 3, by explicit calculations. Here, the suffix “C” means taking
the connected correlator. The superscripts (ν+, ν−) and (1, 0) are put to
clarify the filling fractions of the vacua at which the expectation values are
evaluated, and ♯ counts the number of odd integers in {n1, · · · , nK}.
In order to obtain higher-point correlators of 1

N trϕp (p = 1, 2, · · ·), we
introduce source terms

∑∞
p=1 jptrϕ

p to the partition function:

Zjk =

∫
dN

2
ϕ e

−Ntr

[
1
2
(ϕ2−µ2)2−

∑∞
p=1

jpϕp
]
det (ϕ⊗ 1+ 1⊗ ϕ) . (17)

In the large-N limit, the eigenvalue distribution ρj(x) satisfies the saddle
point equation∫

dy ρj(y)

(
P

1

x− y
+ P

1

x+ y

)
= x3 − µ2x−

∞∑
p=1

pjp
2
xp−1. (18)

Let us consider the case of the filling fractions (1, 0) with the support of
ρj(x) [aj , bj ] (0 < aj < bj). We change variables as

x2 = A+Bξ, y2 = A+Bη with A ≡
a2j + b2j

2
, B ≡

b2j − a2j
2

,

(19)
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and put ρ̃(η) ≡ B
2yρj(y), to simplify (18) as

1

B

∫ 1

−1
dη ρ̃(η) P

1

ξ − η
=

1

2
(A− µ2 +Bξ)−

∞∑
p=1

pjp
4

(A+Bξ)
p
2
−1 (20)

for ξ ∈ [−1, 1], where ρ̃ is normalized by
∫ 1
−1 dηρ̃(η) = 1.

We act
∫ 1
−1 dξ

√
1− ξ2 P 1

ζ−ξ to both sides of (20), and apply the formula

∫ 1

−1
dy
√
1− y2 P

1

x− y
P

1

u− y
= −π + π2

√
1− u2 δ(u− x) (21)

for x, u ∈ [−1, 1]. Then

ρ̃(ζ) =
1

2π

1√
1− ζ2

[
2− (A− µ2)Bζ −B2

(
ζ2 − 1

2

)
(22)

+
∞∑
p=1

pjp
B

2π

∫ 1

−1
dξ
√
1− ξ2 P

1

ζ − ξ
(A+Bξ)

p
2
−1


is obtained. The condition ρ̃(ζ = ±1) = 0 determines A and B as

A = µ2 +
∞∑
p=1

jp
p

2
(A+B)

p
2
−1F

(
−p
2
+ 1,

1

2
, 1;

2B

A+B

)
, (23)

B =2

1 + ∞∑
p=1

jp
4

p

2

(
p

2
− 1

)
B2(A+B)

p
2
−2F

(
−p
2
+ 2,

3

2
, 3;

2B

A+B

)1/2 ,
(24)

from which A and B are obtained iteratively with respect to {jp}. Up to
the first order of {jp},

A = µ2 +
∞∑
p=1

jp
p

2
(2 + µ2)

p
2
−1F

(
−p
2
+ 1,

1

2
, 1;

4

2 + µ2

)
+O(j2), (25)

B = 2 +
∞∑
p=1

jp
p

2

(
p

2
− 1

)
(2 + µ2)

p
2
−2F

(
−p
2
+ 2,

3

2
, 3;

4

2 + µ2

)
+O(j2),

(26)

where O(j2) means a quantity of the quadratic order of {jp}.
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3.3. Planar two-point functions (bosons)

Let us express the planar expectation value of O under the partition func-

tion with the source terms (17) as ⟨O⟩(j)0 . The cylinder amplitude at the
vacuum with the filling fractions (1, 0) is given as⟨

1

N
trϕp

1

N
trϕq

⟩(1,0)

C,0
=

∂

∂jp

⟨
1

N
trϕq

⟩(j)

0

∣∣∣∣∣
{jp}=0

=
∂

∂jp

∫ 1

−1
dζ (A+Bζ)

q
2 ρ̃(ζ)

∣∣∣∣∣
{jp}=0

. (27)

Combining (27) and (16) leads to the result for general filling fractions. In
what follows, we omit the superscript (ν+, ν−) of the correlators when there
is no possible confusion. It turns out that the amplitudes take quadratic
forms of the hypergeometric functions. When p and q are even, they are
polynomials of ω independent of (ν+ − ν−), which is expected from the
c = −2 topological gravity. When p and q are odd and even respectively,⟨

Φ2k+1
1

N
trϕ2ℓ

⟩
C,0

∼ (ν+ − ν−)(const.)ω
k+1 lnω. (28)

When p and q are odd,

⟨Φ2k+1Φ2ℓ+1⟩C,0 ∼ −(ν+ − ν−)
2 1

2π2
1

k + ℓ+ 1

(2k + 1)!

(k!)2
(2ℓ+ 1)!

(ℓ!)2

×ωk+ℓ+1(lnω)2. (29)

Here, in order to subtract nonuniversal contributions in the form of the
product: (nonuniversal part)×(universal part), we took a basis of the odd-
power operators (operator mixing)

Φ2k+1 =
1

N
trϕ2k+1 + (ν+ − ν−)

k∑
i=1

α2k+1,2i(ω)
1

N
trϕ2i (30)

with α2k+1,2i(ω) being a regular function at ω = 0. For example, we can
explicitly construct the basis for the first three operators by considering
⟨Φ1Φ1⟩C,0, ⟨Φ1Φ3⟩C,0, · · ·, ⟨Φ5Φ5⟩:

Φ1 =
1

N
trϕ,

Φ3 =
1

N
trϕ3 − (ν+ − ν−)

4

π

(
1 + ᾱ

(1)
3,2ω +O(ω2)

) 1

N
trϕ2,

Φ5 =
1

N
trϕ5 − (ν+ − ν−)

4

π

(
1 + ᾱ

(1)
5,4ω +O(ω2)

) 1

N
trϕ4,

−(ν+ − ν−)
8

3π

(
1 + 3(1− ᾱ

(1)
5,4)ω +O(ω2)

) 1

N
trϕ2, (31)
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where ᾱ
(1)
3,2 and ᾱ

(1)
5,4 are undertermined constants. They would be deter-

mined by considering higher operators.

Note that (ν+ − ν−) corresponds to a Ramond-Ramond (RR) charge from
the observation at the end of section 2. Φ2k+1 has a RR charge.

3.4. Planar three-point functions (bosons)

Similar procedure to the case of the two-point functions can be used in
computing three-point correlation functions. It turns out that the result
is expressed as cubic forms of the hypergeometric functions. The first two
amplitudes become⟨

(Φ1)
3
⟩
C,0

= (ν+ − ν−)
3
[

1

16π3
(lnω)3 +O((lnω)2)

]
,⟨

(Φ1)
2Φ3

⟩
C,0

= (ν+ − ν−)
3
[
2

π3
+

3

8π3
ω(lnω)3 +O(ω(lnω)2)

]
. (32)

3.5. Planar higher-point functions (bosons)

The results obtained for the one-, two- and three-point functions of op-
erators Φ2k+1 (k = 0, 1, 2, · · ·) naturally suggest the form of higher-point
functions as⟨

n∏
i=1

Φ2ki+1

⟩
C,0

∼ (ν+ − ν−)
n (const.)ω2−γ+

∑n

i=1
(ki−1) (lnω)n (33)

with γ = −1. Besides the power of logarithm (lnω)n, it has the standard
scaling behavior with the string susceptibility γ = −1 (the same as in the
c = −2 topological gravity) and the gravitational scaling dimension k of
Φ2k+1, if we identify ω with “the cosmological constant” coupled to the
lowest dimensional operator on a random surface [17].

3.6. Planar two-point functions (fermions)

The simplest two-point correlator of fermions is computed as⟨
1

N
trψ

1

N
tr ψ̄

⟩
C,0

=
1

2

∫
Ω
dx

1

x
ρ(x)

= (ν+ − ν−)
1

2
(4(1 + ω))−1/2 F

(
1

2
,
3

2
, 3;

1

1 + ω

)
= (ν+ − ν−)

[
4

3π
+

1

π
ω lnω +O(ω)

]
(ω → +0), (34)

exhibiting lnω singular behavior. SUSY invariance implies that this is

equal to
⟨

1
N tr (iB) 1

N trϕ
⟩
C,0

= 1
4
∂
∂ω

⟨
1
N trϕ

⟩
0
, interestingly which can be

seen from (15).
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Next, for
⟨

1
N trψ3 1

N tr ψ̄3
⟩
C,0

, we should consider an operator mixing sim-

ilar to the bosonic case (30). Let us take the new basis as

Ψ1 ≡ 1
N trψ, Ψ̄1 ≡

1

N
tr ψ̄,

Ψ3 ≡ 1
N trψ3 + (mixing), Ψ̄3 ≡

1

N
tr ψ̄3 + (mixing),

Ψ5 ≡ 1
N trψ5 + (mixing), Ψ̄5 ≡

1

N
tr ψ̄5 + (mixing),

· · · , · · · , (35)

where “mixing” means operators to be added so that⟨
Ψ2k+1Ψ̄2ℓ+1

⟩
C,0 ∼ δk,ℓ vk (ν+ − ν−)

2k+1ω2k+1 lnω (36)

with vk constants holds for k, ℓ = 0, 1. It turns out that the choice

Ψ3 =
1

N
trψ3 +

3√
2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ},

Ψ̄3 =
1

N
tr ψ̄3 +

3√
2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ̄} (37)

or

Ψ3 =
1

N
trψ3 − 3√

2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ},

Ψ̄3 =
1

N
tr ψ̄3 − 3√

2
(1 + ω +O(ω2))

1

N
tr {(iB − ϕ2 + µ2)ψ̄} (38)

does the job (36) with v0 =
1
π and v1 =

6
π .

The result (36) tells us that Ψ2k+1 and Ψ̄2k+1 have the gravitational scaling
dimension k same as Φ2k+1 besides the logarithmic factor.

4. 2D type IIA superstring

The type II superstring theory discussed in Refs. [11, 12, 13] has the tar-
get space (φ, x) ∈ (Liouville direction) × (S1 with self-dual radius). The
holomorphic energy-momentum tensor on the string world-sheet is

T = −1

2
(∂x)2 − 1

2
ψx∂ψx −

1

2
(∂φ)2 +

Q

2
∂2φ− 1

2
ψℓ∂ψℓ (39)

with Q = 2, except ghosts’ part. ψx and ψℓ are superpartners of x and φ,
respectively. Target-space supercurrents in the type IIA theory

q+(z) = e−
1
2
ϕ(z)− i

2
H(z)−ix(z), q̄−(z̄) = e−

1
2
ϕ̄(z̄)+ i

2
H̄(z̄)+ix̄(z̄) (40)
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exist only for the S1 target space of the self-dual radius. ϕ (ϕ̄) is the
holomorphic (anti-holomorphic) bosonized superconformal ghost, and the

fermions are bosonized as ψℓ ± iψx =
√
2 e∓iH , ψ̄ℓ ± iψ̄x =

√
2 e∓iH̄ . Then

the supercharges

Q+ =

∮
dz

2πi
q+(z), Q̄− =

∮
dz̄

2πi
q̄−(z̄) (41)

are nilpotent Q2
+ = Q̄2

− = 0, which indeed matches the supercharges Q and
Q̄ in the matrix model.

The spectrum except special massive states is represented by the NS “ta-
chyon” vertex operator (in (−1) picture):

Tk = e−ϕ+ikx+pℓφ, T̄k̄ = e−ϕ̄+ik̄x̄+pℓφ̄, (42)

and by the R vertex operator (in (−1
2) picture):

Vk, ϵ = e−
1
2
ϕ+ i

2
ϵH+ikx+pℓφ, V̄k̄, ϵ̄ = e−

1
2
ϕ̄+ i

2
ϵ̄H̄+ik̄x̄+pℓφ̄ (43)

with ϵ, ϵ̄ = ±1. Locality with the supercurrents, mutual locality, super-
conformal invariance (including the Dirac equation constraint) and the
level matching condition determine physical vertex operators. As discussed
in [13], there are two consistent sets of physical vertex operators - “momen-
tum background” and “winding background”. Let us consider the “wind-
ing background”. 2 The physical spectrum in the “winding background” is
given by

(NS, NS) : Tk T̄−k (k ∈ Z+
1

2
),

(R+, R−) : Vk,+1 V̄−k,−1 (k =
1

2
,
3

2
, · · ·),

(R−, R+) : V−k,−1 V̄k,+1 (k = 0, 1, 2, · · ·),

(NS, R−) : T−k V̄−k,−1 (k =
1

2
,
3

2
, · · ·),

(R+, NS) : Vk,+1 T̄k (k =
1

2
,
3

2
, · · ·), (44)

where we take a branch of pℓ = 1 − |k| satisfying the locality bound pℓ ≤
Q/2 = 1 [18]. We can see that the vertex operators

V 1
2
,+1 V̄− 1

2
,−1, T− 1

2
V̄− 1

2
,−1, V 1

2
,+1 T̄ 1

2
, T− 1

2
T̄ 1

2
(45)

2We can repeat the parallel argument for “momentum background” in the type IIB
theory, which is equivalent to the “winding background” in the type IIA theory through
T-duality with respect to the S1 direction.
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form a quartet under Q+ and Q̄−:
3

[Q+, V 1
2
,+1 V̄− 1

2
,−1] = T− 1

2
V̄− 1

2
,−1, {Q+, T− 1

2
V̄− 1

2
,−1} = 0,

{Q+, V 1
2
,+1 T̄ 1

2
} = T− 1

2
T̄ 1

2
, [Q+, T− 1

2
T̄ 1

2
] = 0, (46)

[Q̄−, V 1
2
,+1 V̄− 1

2
,−1] = −V 1

2
,+1 T̄ 1

2
, {Q̄−, V 1

2
,+1 T̄ 1

2
} = 0,

{Q̄−, T− 1
2
V̄− 1

2
,−1} = T− 1

2
T̄ 1

2
, [Q̄−, T− 1

2
T̄ 1

2
] = 0. (47)

Notice that (46) and (47) are isomorphic to (2) and (3), respectively. It
leads to correspondence of single-trace operators in the matrix model to
integrated vertex operators in the type IIA theory:

Φ1 ⇐⇒ Vϕ(0) ≡
∫
d2z V 1

2
,+1(z) V̄− 1

2
,−1(z̄),

Ψ1 ⇐⇒ Vψ(0) ≡
∫
d2z T− 1

2
(z) V̄− 1

2
,−1(z̄),

Ψ̄1 ⇐⇒ Vψ̄(0) ≡
∫
d2z V 1

2
,+1(z) T̄ 1

2
(z̄),

1

N
tr (−iB) ⇐⇒ VB(0) ≡

∫
d2z T− 1

2
(z) T̄ 1

2
(z̄), (48)

which is consistent with the identification in (9)–(12). Furthermore, it is
natural to extend (48) to case of higher k(= 1, 2, · · ·) as

Φ2k+1 ⇐⇒ Vϕ(k) ≡
∫
d2z Vk+ 1

2
,+1(z) V̄−k− 1

2
,−1(z̄),

Ψ2k+1 ⇐⇒ Vψ(k) ≡
∫
d2z T−k− 1

2
(z) V̄−k− 1

2
,−1(z̄),

Ψ̄2k+1 ⇐⇒ Vψ̄(k) ≡
∫
d2z Vk+ 1

2
,+1(z) T̄k+ 1

2
(z̄). (49)

Since the “tachyons” of the negative winding
∫
d2z T−k− 1

2
(z) T̄k+ 1

2
(z̄) (k =

0, 1, 2, · · ·) are invariant under Q+ and Q̄−, they are expected to be mapped
to { 1

N tr (−iB)k+1} (k = 0, 1, 2, · · ·) perhaps with some mixing terms. We
see in (49) that the powers of matrices are interpreted as windings or mo-
menta in the S1 direction of the type IIA theory. Although such interpre-
tation is not usual in matrix models for two-dimensional quantum gravity
coupled to c < 1 matters, refs. [19] show that a positive power k of a matrix
variable in the Penner model correctly describe the “tachyons” with nega-
tive momentum −k in the c = 1 string on S1, which is in harmony with our

3We here assume that Q+ commutes with T̄k̄ and anti-commutes with V̄k̄, ϵ̄, and that

Q̄− commutes with Tk and anti-commutes with Vk, ϵ. It is plausible from the statistics
in the target space. In ref. [2], we introduce cocycle factors to the vertex operators in
order to realize the (anti-)commutation properties.
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interpretation. In [19], the positive momentum “tachyons” are represented
by introducing source terms of an external matrix via the Kontsevich-
Miwa transformation in the Penner model. In turn, it is natural to expect
in our case that the positive winding “tachyons”

∫
d2z T−k− 1

2
(z) T̄k+ 1

2
(z̄)

(k = −1,−2, · · ·) in the type IIA theory are expressed in a similar manner
in the matrix model.

Note that (R−, R+) operators are singlets under the target-space SUSYs
Q+, Q̄−, and appear to have no counterpart in the matrix model side. Since
the expectation value of operators carrying the nonzero RR charge ⟨Φ2k+1⟩0
does not vanish as seen in (14), the matrix model is considered to corre-
spond to the type IIA theory on a background of the (R−, R+) fields. We
may introduce the (R−, R+) background in the form of vertex operators,
when the strength of the background (ν+ − ν−) is small.

5. Correspondence between the matrix model and the type
IIA theory

Correlation functions among integrated vertex operators in the type IIA
theory on the trivial background are given by⟨∏

i

Vi

⟩
=

1

Vol.(CKV)

∫
D(x, φ,H, ghosts) e−SCFTe−Sint

∏
i

Vi, (50)

where

SCFT =
1

2π

∫
d2z

[
∂x∂̄x+ ∂φ∂̄φ+

Q

4

√
ĝR̂φ+ ∂H∂̄H + (ghosts)

]
,

Sint = µ1

∫
d2z T

(0)

− 1
2

(z)T̄
(0)
1
2

(z̄). (51)

The 0-picture (NS, NS) “tachyon” is given by

T
(0)
k =

i√
2

[
(pℓ − k)eiH + (pℓ + k)e−iH

]
eikx+pℓφ,

T̄
(0)

k̄
=

i√
2

[
(pℓ − k̄)eiH̄ + (pℓ + k̄)e−iH̄

]
eik̄x̄+pℓφ̄. (52)

We consider correlation functions in the IIA theory on a nontrivial (R−,
R+) background as a form⟨⟨∏

i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
. (53)

The background WRR is invariant under the target-space SUSYs:

WRR = (ν+ − ν−)
∑
k∈Z

ak µ
k+1
1 VRR

k ,
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VRR
k ≡

{ ∫
d2z Vk,−1(z)V̄−k,+1(z̄) (pℓ = 1− |k|, k ≤ 0)∫
d2z V

(nonlocal)
−k,−1 (z)V̄

(nonlocal)
k,+1 (z̄) (pℓ = 1 + |k|, k ≥ 1).

(54)

ak is a numerical constant. Although the nonlocal operators in (54) with
pℓ > 1 do not satisfy the Dirac equation constraint on the trivial back-
ground, these operators are necessary to see the correspondence to the ma-
trix model as we see later. Since the RR background possibly change the
on-shell condition, it seems not so strange. We treat the RR background
for (ν+ − ν−) small as⟨⟨∏

i

Vi

⟩⟩
≡
⟨(∏

i

Vi

)
eWRR

⟩
=

∞∑
n=0

1

n!

⟨(∏
i

Vi

)
(WRR)

n

⟩
, (55)

and the picture is adjusted by hand so that the total picture is equal to
−2.

In computation of amplitudes in the type IIA theory, we consider the so-
called s = 0 amplitude in the Liouville theory, which is interpreted as a
bulk amplitude insensitive to details of the Liouville wall [20]. It is con-
sidered to be in harmony with considering the leading nontrivial contri-
bution for small (ν+ − ν−), because higher orders of (ν+ − ν−) seems to
detect a cigar geometry deformed from the two-dimensional target space
(Liouville direction)× (S1 with self-dual radius) [12]. The direction to the
Liouville wall corresponds to the direction to the tip of the cigar. The
Liouville computation yields⟨

VB(0)Vϕ(k)VRR
ℓ

⟩
= δk,ℓ (2 lnµ1), (56)⟨

Vϕ(k1),Vϕ(k2)VRR
ℓ1 VRR

ℓ2

⟩
= (δℓ1,k1+k2δℓ2,−1 + (ℓ1 ↔ ℓ2)) (57)

×π
2

(
(k1 + k2)!

k1!k2!

)2

cL(2 lnµ1)
2.

In the computation (57), we encountered the integral∫
d2z zαz̄ᾱ(1− z)β(1− z̄)β̄ = π

Γ(ᾱ+ 1)Γ(β̄ + 1)

Γ(ᾱ+ β̄ + 2)

Γ(−α− β − 1)

Γ(−α)Γ(−β)
(58)

with

α = ᾱ = k1 + k2, β = β̄ = −k1 − 1, (k1, k2 = 0, 1, 2, · · ·). (59)

This expression is indefinite. We computed it by regularizing as

α→ α+ ϵ, ᾱ→ ᾱ+ ϵ, β → β + ϵ, β̄ → β̄ + ϵ, (60)

where ϵ = 1
cLVL

. VL ≡ 2 ln 1
µ1

is the Liouville volume, and cL is a numerical
constant.
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Let us identify the coupling µ1 of the Liouville interaction Sint in (51)
with the “cosmological constant” ω by shifting the origin of the Liouville
coordinate. Then, it leads to the identification

N tr(−iB) ∼=
1

4

∫
d2z T

(0)

− 1
2

(z) T̄
(0)
1
2

(z̄). (61)

Also, introducing coefficients ck, dk, d̄k, we precisely express the correspon-
dence in (48) and (49) as

Φ2k+1
∼= ckVϕ(k), Ψ2k+1

∼= dkVψ(k), Ψ̄2k+1
∼= d̄kVψ̄(k). (62)

We put the overall normalization factor N in identifying the amplitudes in
the matrix-model side and those in the IIA theory side:

⟨Ntr(−iB) Φ2k+1⟩C,0 ∼= N
⟨⟨

1

4

(∫
T
(0)

− 1
2

T̄
(0)
1
2

)
ckVϕ(k)

⟩⟩
. (63)

The left hand side is calculated by using (14):

(LHS) = −1

4
∂ω ⟨Φ2k+1⟩0

∼ −(ν+ − ν−)
2k

π

(2k + 1)!!

(k + 1)!
ωk+1 lnω. (64)

On the other hand, under a suitable choice of the picture, leading nontrivial
contribution for (ν+ − ν−) small to the right hand side is

1

4
N ck ⟨VB(0)Vϕ(k)WRR⟩

=
1

4
N ck(ν+ − ν−)

∑
ℓ∈Z

aℓ ω
ℓ+1

⟨
VB(0)Vϕ(k)VRR

ℓ

⟩
=

1

2
(ν+ − ν−)N ck ak ω

k+1 lnω, (65)

where (56) was used. So, the identification (63) leads to

N ck ak = − 2

π

(2k + 1)!

k!(k + 1)!
. (66)

Next, let us consider the correspondence

⟨Φ2k1+1Φ2k2+1⟩C,0 ∼= N ⟨⟨ ck1Vϕ(k1) ck2Vϕ(k2) ⟩⟩ . (67)
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Leading nontrivial contribution to the right hand side is obtained from (57)
as

N ck1 ck2

⟨
Vϕ(k1)Vϕ(k2)

1

2!
(WRR)

2
⟩

=
1

2
N ck1 ck2 (ν+ − ν−)

2
∑

ℓ1,ℓ2∈Z
aℓ1 aℓ2 ω

ℓ1+ℓ2+2
⟨
Vϕ(k1)Vϕ(k2)VRR

ℓ1 VRR
ℓ2

⟩

= (ν+ − ν−)
2N cL ck1 ck2 ak1+k2 a−1 2π

(
(k1 + k2)!

k1!k2!

)2

ωk1+k2+1 (lnω)2.

(68)

The result of the left hand side is given by (29). Comparing these we have(
ck1

(2k1 + 1)!

)(
ck2

(2k2 + 1)!

)
(ak1+k2(k1 + k2)!(k1 + k2 + 1)!)

= − 1

4π3
1

N cLa−1
. (69)

It is solved as

ck = c0(2k + 1)!, ak =
a0

k!(k + 1)!
, (70)

for k = 0, 1, 2, · · · with

c20a0 = − 1

4π3
1

N cL a−1
. (71)

Remarkably, (66) is consistent to (70). It serves a quite nontrivial check of
the correspondence.

Also, the correspondence of the amplitudes containing fermions⟨
Ψ1Ψ̄1

⟩
C,0

∼= N
⟨⟨
d0Vψ(0) d̄0Vψ̄(0)

⟩⟩
,⟨

Ψ3Ψ̄3
⟩
C,0

∼= N
⟨⟨
d1Vψ(1) d̄1Vψ̄(1)

⟩⟩
(72)

yields

d0d̄0 = −1

4
c0, d1d̄1 =

3

π2
c0
a20
. (73)

It leads to the precise correspondence between the supercharges:

Q ∼=
d0
c0
Q+, Q̄ ∼=

d̄0
c0
Q̄−. (74)

So far, the correspondence seems consistent at the level of planar or tree
amplitudes.
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6. Summary and Discussion

We computed planar correlation functions in the double-well SUSY matrix
model, and discussed its correspondence to 2D type IIA superstring theory
on (R−,R+) background by comparing amplitudes in both sides. This is
an interesting example of matrix models for superstrings with target-space
SUSY, in which various amplitudes are explicitly calculable.

It is interesting to examine the correspondence at deeper level in higher
genus amplitudes and in amplitudes containing special massive operators.
Also, it is important to discuss the correspondence in the off-shell formu-
lation such as the hybrid formalism [14].
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