
Parafermions and homotopy algebras

Todor Popov∗

Institute for Nuclear Research and Nuclear Energy,
Bulgarian Academy of Sciences,

72 Tsarigradsko chaussée, 1784 Sofia, BULGARIA

ABSTRACT

We explore the Fock spaces of the parafermionic algebra closed by the creation and an-
nihilation operators introduced by H.S. Green. Each parafermionic Fock space allows for
a free minimal resolution by graded modules of the graded 2-step nilpotent subalgebra
of the parafermionic creation operators. Such a free resolution is constructed with the
help of a classical Kostant’s theorem computing suitable Lie algebra cohomologies (of
the creation nilpotent subalgebra with values in the parafermionic Fock space). We give
a cohomological interpretation of the Schur functions identities which have been recently
discovered by Stoilova and Van der Jeugt. The endomorphisms of the parafermionic min-
imal free resolution close a differential graded algebra which is naturally endowed with
the structure of a Stasheff homotopy algebra.

1. Parastatistics Algebras
H.S. Green introduced a scheme of quantization based on algebras of non-canoni-
cal commutation relations between the creation and annihilation operators. A
quantum system obeying the Fermi-Dirac statistics and usually quantized accord-
ing to the canonical anticommutation relations was quantized by H.S. Green with
the help of the Lie algebra coined parafermionic algebra [6]

[[a†i , aj ], a
†
k] = 2δjka

†
i , [[a†i , aj ], ak] = −2δikaj ,

[[a†i , a
†
j ], a

†
k] = 0 , [[ai, aj ], ak] = 0 .

(1)

Such particles are coined parafermions. Similarly one can introduce parabosons,
replacing the canonical commutation relations of the Bose-Einstein statistics with
the parabosonic algebra, which is the Lie super algebra (1) in which the Lie
brackets are understand as Lie super-brackets. Parafermionic and parabosonic
algebras are called parastatistics algebras.
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The parafermionic algebra g with finite number degrees of freedom n is isomor-
phic to a semi-simple Lie algebra

g = h⊕
⊕
α∈∆+

gα ⊕
⊕
α∈∆−

gα , (2)

for a root system ∆ = ∆+ ∪∆− of type Bn with positive roots ∆+ given by

∆+ = {ei}1≤i≤n ∪ {ei + ej , ei − ej}1≤i<j≤n , and ∆− = −∆+ .

Hence the parafermionic algebra g is the orthogonal algebra g ∼= so2n+1 written
into an oscillator physical Cartan-Weyl basis a†i := Eei and ai := E−ei endowed
with the anti-involution †.
In the same vein the parabosonic algebra g̃ with finite number degrees of freedom
n is isomorphic to the Lie superalgebra of type B0,n in the Kac table, i.e., the or-
thosymplectic algebra g̃ ∼= osp1,2n. More generally a system with n parabosonic
and m parafermionic degrees of freedom is quantized [17] by the Lie superalgebra
of type Bm,n, that is, osp1+2m,2n.

Note that the Z2-grading of the parastatistics (super)-algebras is the opposite to
the canonical one, in which bosons are even and fermions are odd generators.
In this note we will stick to the case of the parafermionic algebra g = so2n+1.

2. Parafermionic Fock space
The parafermionic Lie algebra g has decomposition g = n∗ o un n, where u is a
reductive and n is a nilpotent Lie algebra. The creation operators a†i generate the
free 2-step nilpotent Lie algebra n. The algebra n is positively graded with degrees
n1 =

⊕
iCa

†
i =: V and n2 = [n1, n1] ∼= ∧2V ( and ni = 0 for i ≥ 3). Likewise

n∗ is generated by the annihilation operators ai. The parafermionic relations (1)
imply that the generators Eij =

1
2 [a

†
i , aj ] close the real form un of a linear algebra

gln due to E†
ij = Eji and

[Eij , Ekl] = δjkEil − δilEjk .

The vector space V = n1 is the fundamental representation for gl, Eija
†
k = δjka

†
i .

The parabolic subalgebra p = n∗ o gl ⊂ g acts trivially on the 1-dimensional
representation spanned on the vacuum state |0⟩. The induced representation of the
vacuum module is isomorphic the universal enveloping algebra1 Un [3] generated
by the free action of the creation operators

IndgpC|0⟩ = Ug⊗Up C|0⟩ ∼= Un .

1The algebra Un was denoted PS(V ) in the paper [13] as an abriviation of ParaStatistics
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Definition 2.1. The parafermionic Fock space V(p) is the unitary representation
V(p) of the parafermionic algebra g ∼= so2n+1 built on a unique vacuum vector
|0⟩ such that

ai |0⟩ = 0 , [ai, a
†
j ]|0⟩ = pδij |0⟩ . (3)

The non-negative integer p is called the order of the parastatistics.

The vacuum vector |0⟩ is the lowest weight vector of a g-module with weight
−p

2

∑
ei which is annihilated by all annihilation (lowering) operators ai. The

parafermionic Fock space V(p) with an integer p is finite-dimensional and it has
a unique Highest Weight (HW) vector

|Λ⟩ = (a†1)
p . . . (a†n)

p |0⟩ , (4)

thus the so2n+1-module V(p) is a highest weight module of weight Λ

V Λ = V(p), Λ =
p

2

n∑
i=1

ei .

The parafermionic algebra of order p = 1 coincides with the ordinary fermionic
Fock space. The physical meaning of the order p for the parafermionic algebra
is the number of particles that can occupy same state, that is, we encounter Pauli
exclusion principle of order p. The symmetric submodule Sp+1n1 ⊂ n⊗p+1

1 is
spanned by the “exclusion condition” (a†i )

p+1 = 0 and it generates a twosided
ideal (Sp+1n1). The parafermionic Fock space V(p) as Lowest Weight module
will be isomorphic to the factor module of Un by the “exclusion” ideal (Sp+1V )

V(p) ∼= Un/(Sp+1n1) .

Equivalently the parafermionic Fock space V(p) = V Λ is a HW g-module with
HW vector |Λ⟩, cf. eq. (4)

V Λ ∼= Un∗/(Sp+1n∗1)) = V(p) .

2.2. Character of V(p)
Weyl character formula applied for Schur module V λ yields the Schur polynomial

sλ(x1, . . . , xn) =
∑

w∈W1

ε(w)ew(ρ1+λ)/
∑

w∈W1

ε(w)ew(ρ1), W1 := Sn ,

where the variables are xi := exp(−ei) and the vector ρ1 = 1
2

∑n
i=1(n−2i+1)ei.

Alternatively the Schur polynomials is written as

sλ(x1, . . . , nn) =
det ||xρ1i+λi

j ||
det ||xρ1ij ||

. (5)
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The sum over the Schur functions with no more than p columns can be represented
as a quotient of determinants (see p.84 in the book of Macdonald [16])

Dρ+pθ/Dρ = epθ
∑

λ: l(λ′)≤p

sλ(x1, . . . , xn) , θ =
1

2

∑
ei, (6)

where W = SnnZn
2 is the Weyl group of the root system of Dynkin type Bn and

Dρ =
∑

w∈W ε(w)ewρ with ρ = 1
2

∑n
i=1(2n− 2i+ 1)ei. Here λ′ stands for the

partition conjugated to λ and l(µ) is the length of the partition µ.
The LHS of the identity (6) can be interpreted [19] as a character of the parafermi-
onic representation V(p) therefore the identity between so2n+1 and gln characters
implies the following lemma.

Lemma 2.3. The HW so2n+1-module V Λ ∼= V(p) of HW vector |Λ⟩ = |pθ⟩ splits
into a sum of irreducible gln-modules V λ

V Λ ↓so2n+1

gln
=

⊕
λ:λ⊆(pn)

V λ ,

where the sum runs over all partitions which match inside the n× p frame, e.g.

n = 5, p = 3.

The vectors in the parafermionic Fock space V(p) are in bijection with the semi-
standard Young Tableaux matching into the n × p rectangular frame [2, 12, 13].
An explicite basis for V(p) in terms of the Gel’fand-Zetlin patterns is given in
[19].
We recall the Frobenius notation for a Young diagram η

η := (α1, . . . , αr|β1, . . . , βr) r = rank(η)

where the rank r is the number of boxes on the diagonal of η, arm-length αi is the
number of boxes on the right of the ith diagonal box, and leg-length βi is the of
boxes below the ith diagonal box. The number of boxes |η| in η is

|η| = r +

r∑
i=1

αi +

r∑
i=1

βi .

The conjugated diagram η′ is the one in which the arms and legs are exchanged

η′ := (β1, . . . , βr|α1, . . . , αr) .
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It is worth noting that the set of self-conjugated Young diagrams {λ|λ = λ′} is
singled out by the condition βi = αi in Frobenius notation.
In the works [15] and [20] Lievens, Stoilova and Van der Jeugt conjectured sign-
alternating character formulas for the parabosonic and parafermionic Fock spaces.
In fact if one changes the category of vector spaces to the category of vector super-
spaces [13] by functorial property the parabosonic formula will follow from the
parafermionic one. So we will concentrate on the sign-alternating parafermionic
character identity [20] for V(p)∑

µ:µ=µ′(−1)
1
2
(r+|µ|)sµ(p)(x)∏

i (1− xi)
∏

i<j (1− xixj)
=

∑
λ:l(λ′)≤p

sλ(x) . (7)

Here the sum runs on the self-conjugated Young diagrams. The Young diagram
µ(p) is the arm p-augmentation of µ, which is the diagram such that the arm-
lengths are augmented with p. Here µ is self-conjugated µ = (α|α) thus the arm
p-augmentation µ(p) reads

µ(p) = (α1 + p, . . . , αr + p|α1, . . . , αr). (8)

The conjectured character identities has been proven by Ron King [10]. For a
sketch of an alternative proof see [13].

3. Cohomology of n
We will give a homological interpretation of the sign-alternating character formula
relying on the homology H•(n,V(p)) and the cohomology H•(n,V(p)) with co-
efficients in the parafermionic space V(p).
Recall that the standard Chevalley-Eilenberg complex of the Lie algebra n is the
chain complex C•(n) = (Un⊗K ∧kn, dp) with differential

dk(u⊗ x1 ∧ . . . ∧ xp) =
∑
i

(−1)i+1uxi ⊗ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ xp

+
∑
i<j

(−1)i+ju⊗ [xi, xj ] ∧ x1 ∧ . . . ∧ x̂i ∧ . . . ∧ x̂j ∧ . . . ∧ xk . (9)

It provides a non-minimal projective(in fact free) resolution of C, C•(n)
ϵ→ C.

With the help of the standard resolution C•(n) the homologies Hk(n,C) of the
Lie algebra n with trivial coefficients is obtained as the homology of the derived
complex C⊗Un C•(g)

Hk(n,C) = TorUn
k (C,C) ∼= Hk(C⊗Un C•(n)) .

The (right) derived complex C ⊗Un C•(n) is the chain complex with degrees∧•n = C ⊗Un Un ⊗
∧•g and differentials ∂k := id ⊗Un dk :

∧kn →
∧k−1n.

The differential ∂ is induced by the Lie bracket [ · , · ] :
∧2n → n of the graded
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Lie algebra n = n1 ⊕ n2. It identifies a pair of degree 1 generators a†i , a
†
j ∈ n1

with one degree 2 generator a†ij := (a†i ∧ a†j) = [a†i , a
†
j ] ∈ n2. The differential

∂k is the extension of the mapping ∂2 := −[ · , · ] on the exterior powers
∧kn. In

greater details the chain complex has degrees∧k
n =

∧k
(V ⊕ ∧2V ) =

⊕
s+r=k

∧s(∧2V )⊗ ∧r(V ) (10)

and differentials ∂k : ∧s(∧2V )⊗ ∧r(V ) → ∧s+1(∧2V )⊗ ∧r−2(V ) such that

∂k :a
†
i1j1

∧ . . . ∧ a†isjs ⊗ a†1 ∧ . . . ∧ a†r 7→∑
i<j

(−1)i+ja†ij ∧ a†i1j1 ∧ . . . ∧ a†isjs ⊗ a†1 ∧ . . . ∧ â†i ∧ . . . ∧ â†j ∧ . . . ∧ a†r .

More generally, the homology with coefficients in the right Un-module M is given
by the homology of the derived complex M ⊗Un C•(g)

Hk(n,M) = TorUn
k (M,C) ∼= Hk(M ⊗Un C•(n)) .

On the other hand the cohomology of the Lie algebra n with coefficients in a
left Un-module M ′ is obtained by the cohomology of the (left) derived complex
HomUn(C•(n),M

′)

Hk(n,M ′) = ExtkUn(C,M ′) = Hk(HomUn(C•(n),M
′)) .

The left derived complex HomUn(C•(n),M
′) is a cochain complex. A p-cochain

f ∈ ∧kn∗ ⊗M ′ is a multilinear function f(x1, . . . , xp) with variables xi ∈ n and
values in the left n-module M ′. The coboundary δf of such a (k + 1)-cochain

δf(x1, . . . , xk+1) =
∑
i

(−1)i+1xif(x1, . . . , x̂i, . . . , xk+1) (11)

+
∑
i<j

(−1)i+jf([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xk+1) .

In particular, the cochain complex HomUn(C•(n),C) = (
∧•n∗, δ) calculates the

cohomology2

Hk(n,C) = ExtkUn(C,C) ∼= Hk(HomUn(C•(g),C)) . (12)

The coboundary map δk :
∧kn∗ →

∧k+1n∗ is transposed to the differential ∂k+1

δk : ai1j1 ∧ . . . ∧ aisjs ⊗ a1 ∧ . . . ∧ ar 7→ (13)
s∑

l=1

(−1)i+jai1j1 ∧ . . . ∧ âiljl ∧ . . . ∧ aisjs ⊗ ail ∧ ajl ∧ a1 ∧ . . . ∧ . . . ∧ ar ,

2In the presence of metric one has δ := ∂∗(see below)
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where the sum is over il < jl. The differential δk is (up to a conventional sign)
the extension of the dualization of the Lie bracket δ1 := [ · , · ]∗ : n∗ →

∧2n∗ by
the Leibniz rule(i.e., as derivation).
Since the algebra n is nilpotent the universal enveloping algebra Un is not only
filtrated but also graded. Let us suppose that the right Un-module M is graded
module. H. Cartan [1] proved that one has the identification between homology
and cohomology of n with coefficients in graded Un-modules

Hk(n,M)∗ = TorUn
k (M,C)∗ ∼= ExtkUn(C,M∗) = Hk(n,M∗) (14)

where the left Un-module M∗ = Hom(M,C) is the graded-dual of the right
Un-module M . In particular one has

Hk(n,C)∗ = Hk(n,C) . (15)

In our application we will take the left Un-module M ′ to be the parafermionic
Fock space V Λ = V(p) thus M∗ will be the right Un-module V(p)∗ = V ∗Λ built
at the top of the left vacuum ⟨0| = |0⟩∗.

3.1. Kostant’s theorem
The Kostant theorem is a powerfull tool which enable us to calculate cohomolo-
gies. Let’s have a semi-simple algebra g and its Borel subalgebra

b = h⊕
⊕
α∈∆+

gα .

Any parabolic subalgebra p, g ⊃ p ⊇ b has a Levi decomposition p = g1 n n
where g1 is a reductive algebra and n is the nilradical (largest nilpotent ideal) of
p. Consider the g-module V Λ of weight Λ and the cohomology H•(n, V Λ) with
coefficients in the reduction n-module V Λ ↓gn. The Kostant’s theorem gives the
decomposition of H•(n, V (λ)) as a sum of irreducibles g1-modules V µ.

Theorem 3.2. (Kostant) Let W be the Weyl group of the algebra g and the subset
Φσ ⊆ ∆+ be

Φσ := σ∆− ∩∆+ ⊆ ∆+ .

Let ρ be the Weyl vector ρ = 1
2

∑
α∈∆+

α. The roots of the nilpotent radical n
are denoted as ∆(n) and the subset W 1 = {σ ∈ W |Φσ ⊂ ∆(n)} is a cross
section of the coset W1\W . The cohomology H•(n, V Λ) has a decomposition
into irreducible g1-modules V µ

H•(n, V Λ) =
⊕
σ∈W 1

V σ(ρ+Λ)−ρ

where the cohomological degree Hj(n) is given by the number of the elements
j := #Φσ.
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3.3. The cohomology H•(n,C)
From our perspective the cohomology H•(n,C) with trivial coefficients is the
special case of parafermionic Fock space with p = 0 when V(p) = C. So we start
by review of this simpler situation.

Theorem 3.4. Let n be the free 2-step nilpotent algebra n = V ⊕∧2V . The coho-
mology H•(n,C) = ⊕pH

p(n,C) is a reducible gl(V )-module and decomposes
into irreducible Schur modules V ∗µ with self-conjugated Young diagrams

Hk(n,C) =
⊕

µ:µ=µ′

V ∗µ , k =
1

2
(|µ|+ r(µ)) .

Here the weight |µ| (the rank r(µ)) is the number of boxes (on the diagonal) in µ.

Here we will follow closely an approach due to J. Grassberger, A. King and P.
Tirao [5] which is an application of the Konstant’s theorem.

Proof. Consider the parafermionic algebra g ∼= so2n+1 with Cartan decomposi-
tion (2). Consider the parabolic algebra p ⊂ g

p =
⊕
i>j

gei−ej ⊕ h⊕
⊕
α∈∆+

gα .

From the parafermionic relations (1) is readily seen that the Levi decomposition
of the parabolic subalgebra p = g1 n n has reductive component

g1 = h⊕
⊕
i̸=j

gei−ej
∼= gln (16)

acting by automorphisms on the free 2-step nilpotent algebra n (the space n1 = V
being the fundamental representation of g1 = gln)

n =
⊕
i

gei ⊕
⊕
i<j

gei+ej
∼= V ⊕ ∧2V . (17)

The Weyl group W1 of g1 = gln is the symmetric group Sn operating on {e1, . . .
. . . , en} by permutations. The Weyl group of g = so2n+1 is W = Sn n Zn

2 . The
Zn
2 is generated by operators τi, i = 1, . . . , n such that τ2i = 1 acting by

τi(ej) =

{
−ej i = j
ej i ̸= j

.

The elements τI ∈ Zn
2 are indexed by subsets I ⊆ {1, . . . , n}, τI ∈

∏
i∈I τi.

Let us describe the subset W 1 which has order |W 1| = 2n. Both W 1 and Zn
2

are cross sections of W1\W thus for each τI ∈ Z exists a unique permutation
ωI ∈ Sn such that ωIτI ∈ W 1.
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Let b0 be the nilpotent part of the Borel algebra b0 = b/h and and the complement
be m1 = g1 ∩ b0 = b0/n. The subset W 1 = {σ ∈ W |Φσ ⊆ ∆(n)} keeps stable
also the complement of ∆(n)

σ∆(n) ⊆ ∆+ ⇔ σ−1∆(b0/n) ⊆ ∆+ .

The root system of m1 is ∆(m1) = {ei− ej , i < j} therefore ωIτI ∈ W 1 implies
τ−1
I ω−1

I ∆(m1) ⊆ ∆+ or

τIω
−1
I (ei − ej) > 0 i < j .

These inequalities are satisfied for ωI ∈ Sn defined by

ωI(a) > ωI(b) when

{
a < b a ∈ I b ∈ I
a > b a /∈ I b /∈ I

a ∈ I b /∈ I
.

The permutation places all elements of I = {i1, . . . ir} after all the elements of
its complement Ī preserving the order of Ī and reversing the order of I , that is

ωI(1, . . . , i1, . . . , ir, . . . , n) = (1, . . . , î1, . . . , îr, . . . , n, ir, . . . , i2, i1) . (18)

The permutation ωI can be represented as a product of cyclic permutations

ωI = ζir . . . ζi2ζi1

where ζik is the place permutation cycling places from ik − k + 1 to n − k + 1
(the cycle is of length n− ik + 1). Thus the action of ωI is represented by the
sequence of steps

ζi1(1, . . . , i1, . . . , ik, . . . n) = (1, . . . , î1, i1 + 1, . . . , n, i1),

ζi2(1, . . . , i2︸︷︷︸
place i2−1

, . . . , n, i1) = (1, . . . , î2, . . . , n, i2, i1),

. . .

ζik(1, . . . , ik︸︷︷︸
place ik−k+1

, . . . , n, ik−1, . . . , i1) = (1, . . . , îk, . . . , n, ik, . . . , i1) .

Note that after the j-th step, the last j places are not touched by further cyclings.

The Weyl vector ρ associated to g = so2n+1 reads ρ = 1
2

∑n
i=1(2n − 2i + 1)ei.

Note that the components of ρ are strictly decreasing with step 1 = ρi+1−ρi. The
highest weights λI = σ(ρ) − ρ for σ ∈ W 1 are non-positive due to σ(ρ)i ≤ ρi.
The cycling structure of ωI implies the following form of λI =

∑
λjej

λj = −(n− in−j+1 + 1)χ(n−r+1≤j≤n) −
r∑

k=1

χ(ik−k+1≤j≤n−k) .
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One has an isomorphism between a HW gln-module V λI with negative weight
λI ≤ 0 and the dual representation V ∗µI with reflected weight µI ≥ 0

V λI ∼= V ∗µI µI :=
n∑

i=1

µiei = −
n∑

i=1

λn−i+1ei ≥ 0 .

The components of µI are decreasing positive integers µ1 ≥ . . . ≥ µn ≥ 0

µj = (n− ij + 1)χ(1≤j≤r) +

r∑
k=1

χ(k+1≤j≤n−ik+k) , (19)

and these components code a self-conjugated Young diagram µ′
I = µI

µI = (αI |αI) αI = (α1, . . . , αr), for αj = n− ij .

Roughly speaking the j-th cyclic permutation ζik in ωI creates a self-conjugated
hook subdiagram of µI with αj = βj = n− ij .
There exist a maximal diagram µ{1,...,n} = Ωn corresponding to the square dia-
gram Ωn := (nn). For a subset I ⊆ {1, . . . , n} we get self-conjugated Young
diagram µI included into the square diagram µ ⊆ Ωn. The empty subset gives the
empty diagram µ∅ = ∅. The number of self-conjugated Young diagrams, such
that µI ⊆ Ωn is 2n so these are in bijection with elements of W 1.
By virtue of the Kostant’s theorem [11] the cohomology H•(n,C) of the free
2-step nilpotent Lie algebra n has decomposition into Schur modules with HW
vector |µI⟩

H•(n,C) =
⊕

µI :µ
′
I=µI

V ∗µI , |µI⟩ = E−Φσ , σ ∈ W 1,

labelled by self-conjugated Young diagrams.
The cohomological degree of the elements in V ∗µI is determined the cardinality
of the set #Φσ for any σ ∈ W 1. Let σ = ωIτI ∈ W 1. A root ξ ∈ Φσ ⊆ ∆(n)
whenever σ−1ξ < 0 in view of Φσ = ∆− ∩ σ−1∆+. But the set ∆(n) is stable
under permutations and τ−1

I = τI thus

#Φσ = #{ξ ∈ ∆(n), τIξ < 0}
= #{gei , i ∈ I}+#{gei+ej : i < j, i ∈ I}

=
∑
i∈I

(1 + n− i) = r +

r∑
k=1

(n− ik) = r + s = degµI .

Thus the cohomological degree k = degµI = #Φσ is the total degree k = (r+s)
of the bi-complex ∧s(∧2V ∗) ⊗ ∧sV ∗. The number of boxes above the diagonal
in µI is s = 1

2(|µI | − r) so finally one gets

deg µI =
1

2
(r(µI) + |µI |) .
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In particular, the degree kmax = N of the maximal square diagram Ωn = (nn) is

N = degΩn = n+
n(n− 1)

2
=

n(n+ 1)

2
.

We got the cohomology H•(n,C) but also the homology H•(n,C) thanks to the
isomorphism (15). The homology H•(n,C) was first calculated by Jósefiak and
Weyman [7] and then independently using different method by Sigg [18].

3.5. The cohomology H•(n,V(p))
The application of the Kostant theorem [11] for calculation of H•(n,C) [5] has the
advantage to be generalizable for cohomologies with coefficients in the parafer-
mionic Fock space V(p).

Corollary 3.6. Let n be the free 2-step nilpotent Lie algebra n = V ⊕ ∧2V
and V Λ = V(p) be the parafermionic Fock space. The cohomology H•(n, V Λ)
with values in the V Λ ↓gn has the following decomposition into irreducible gl(V )-
modules

Hk(n, V Λ) ∼=
⊕

µ:µ=µ′

V ∗µ(p)
, k =

1

2
(|µ|+ r(µ)) ,

where the sum is over self-conjugated Young diagrams µ = (α|α) and the nota-
tion µ(p) stays for the p-augmented diagram µ(p) = (α+ p|α).

Note that the cohomology H•(n,C) corresponds to the case p = 0. The result
follows again from the Kostant’s theorem, but now the HW gl(V )-modules are
built on the HW weights σ(ρ + Λ) − ρ where Λ = p

2

∑
ei. The permutation

σ = ωIτI ∈ W 1 is again given by eq. (18). The shift Λ modifies the dominant
weight νI =

∑
νiei for given I = {i1, . . . , ir} as follows

νj =
p

2
+ (n− ij + 1 + p)χ(1≤j≤r) +

r∑
k=1

χ(k+1≤j≤n−ik+k) .

But these are the HW gl(V )-weights of the HW vectors of gl(V )-modules

V ∗µ(p) ⊗n∗ |Λ⟩

where µ(p) is one of the diagrams µ
(p)
I = (α|β) with arm-lengths αj(µ

(p)
I ) =

n − ij + p and leg-lengths βj(µ
(p)
I ) = n − ij , for j = 1, . . . , r. The arm p-

augmented diagram µ(p) results from the symmetric diagram µ = (β|β) (19) by
augmenting the arm-lengths (see eq. (8)). The sum over σ ∈ W 1 in Kostant’s
theorem is equivalent to the sum over self-conjugated Young diagrams µ = µ′.
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4. Resolution of V(p)
According to a general result of Henri Cartan [1] every graded A-module M of
a graded algebra A allows for a minimal projective resolution by projective A-
modules and moreover the notions of a projective and a free module coincide in
the graded category. Thus for every graded A-module M we end up with a free
resolution.
The universal enveloping algebra Un is a graded associative algebra and the para-
fermionic Fock space V(p) = V Λ is a graded Un-module. Therefore there exists
a minimal free resolution P• =

⊕N
k=0 Pk of the right Un-module V(p)∗

0 → PN → . . . → P1 → P0
ϵ→ V(p)∗ → 0 (20)

by some free right Un-modules Pk = Ek ⊗ Un. Here the map ϵ is the augmen-
tation of Un. The minimality of the resolution implies that the differentials of the
derived complex P• ⊗Un C vanish [1]. Hence the multiplicity spaces Ek coincide
with the homologies of n with coefficients in the right module V(p)∗

Ek
∼= TorUn

k (V(p)∗,C) = Hk(n,V(p)∗) .

But as the homology and cohomology of n are related by an isomorphism (14) we
find the vector space isomorphism

E∗
k
∼= Hk(n,V(p)) .

hence by Corollary 3.6. we have constructed the minimal free resolution (20).

Proposition 4.1. The Euler-Poincare characteristic of the free minimal resolution
of the (dual of the) parafermionic Fock space V(p) (20) yields the parafermionic
sign-alternating identity (7) found in the work [19] of Stoilova and Van der Jeugt.

Proof. In general, the mapping of modules of an algebra into its Grothendieck ring
of characters is an exemple of Poincare-Euler characteristic. The free resolution
(20) is naturally a (reducible) gl(V )-module and the Schur functions (5) span the
ring of gl(V )-characters. All the homology of a resolution is concentrated in
degree 0, hence on the RHS of (7) stays the character of V(p)(6)

charV(p) = epθ
∑

λ⊆(pn)

sλ(x) .

From the Poincaré-Birkhof-Witt theorem follows that the character of Un (see
[2, 3]) is

charUn =
1∏

i(1− xi)
∏

i<j(1− xixj)

Thus the alternating sum on the LHS comes from the characters of the gl(V )-
modules Ek ⊗ Un taken with alternating signs corresponding to the homological
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degree. The factor epθ which is the weight of the HW vector |Λ⟩ cancels which
proves the parafermionic sign-alternating identity (7).

Remark. When p = 0 the free minimal resolution of the trivial module C(20)
with multiplicity spaces Ek associated to the homologies Hk(n, C) was con-
structed by Józefiak and Weyman [7]. Thus the sign-alternating character iden-
tity (7) with p = 0 gives back a homological explanation of the “Littlewood
formula”[7] ∑

η:η′=η(−1)(|η|+r)/2sη(x)∏
i (1− xi)

∏
i<j (1− xixj)

= 1 . (21)

5. Kadeishvili Homotopy Transfer Theorem
Let A be the complex of morphisms of the free resolution P• (20) of the right
Un-module V(p)∗

A = HomUn(P•, P•) = EndUnP• .

The graded morphisms on A are the graded Un-linear maps f : P• → P•. The
differential in A is the the differential of the map

d(f) = dP ◦ f − (−1)deg ff ◦ dP .

Therefore A is a differential graded algebra (DGA) of endomorphism of P•.
We are now in position to apply the Kadeishvili’s homotopy transfer theorem [8].
It induces on the cohomology H•A of the DGA A a structure of higher multipli-
cations mi : A

⊗i → A satisfying the Stasheff coherent relations. This structure
is called homotopy associative algebra, or A∞-algebra for short. Whenever A is
a commutative DGA there exists the refined version of commutative A∞-algebra
called homotopy commutative (and associative) algebra, or C∞-algebra for short.
For a friendly introduction to homotopy transfer theorems we send the reader to
the lectures [9] and the textbook [14](see chapter 9).

Theorem 5.1. (Kadeishvili [8]) Let (A, d,∧) be a (commutative) DGA. There
exists a A∞-algebra (C∞-algebra) structure on the cohomology H•(A) and a
A∞(C∞)-quasi-isomorphism fi : (⊗iH•(A), {mi}) → (A, {d,∧, 0, 0, . . .}) such
that the inclusion f1 = i : H•(A) → A is a cocycle-choosing homomorphism
of cochain complexes. The differential m1 on H•(A) is zero (m1 = 0) and m2
is strictly associative operation induced by the multiplication on A. The resulting
structure is unique up to quasi-isomorphism.

By virtue of the Kadeishvili homotopy transfer theorem [8] the homology algebra
H•A of the DGA A is a A∞-algebra. The cohomology H•A of the DGA A =
HomUn(P•, P•) is isomorphic as m2-algebra to the extension algebra of V(p)∗

H•A = H•(HomUn(P•, P•)) ∼= Ext•Un(V(p)
∗,V(p)∗) .

Hence the algebra Ext•Un(V(p)
∗,V(p)∗) is endowed with a structure of A∞.
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The study of the latter A∞-algebra is a challenging problem involving represen-
tation theory and combinatorics of Young tableaux. We have made already some
progress in dealing with the higher structure in the particular case p = 0, that is,
on the cohomology of the 2-step nilpotent free Lie algebra

H•(n,C) = Ext•Un(C,C) .

Due to the (super-)commutativity of the cohomology ring H•(n,C) the induced
A∞-algebra enjoys additional symmetries and provides an example of commu-
tative (and associative) homotopy algebra. For a report on the C∞-structure on
H•(n,C) see the contribution to the XXVII Geometrical Seminar in Zlatibor,
2012 [4].
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