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Abstract

We consider the problem of preservation of symmetries in the perturbative renor-
malization from the perspective of the deformation theory.
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We start with a general introduction to the concept of renormalization. Let
us have a “physical quantity”,

U(κ1, . . . , κN ; ε) ≡ U(κ; ε) (κ = (κ1, . . . , κN )) (1)

that depends on a set of physical parameters κ1, . . . , κN , called also cou-
pling constants, and one more subsidiary parameter called a regularization
parameter. The meaning of the coupling constants is that they introduce
a deformation of some initial physical model at κ1 = · · · = κN = 0, which
for instance, can present the physical system “without interaction”. The
regularization parameter is introduced in order to make the quantity U
mathematically well defined. Let us set ε → 0 to be the limit that should
correspond to the actual physical model, but on the other hand, let us
assume that

̸ ∃ lim
ε→0

U(κ; ε) .

We note that the values of U(κ; ε) can be just numbers but more often they
belong to some vector space V. For instance, in Quantum Field Theory
(QFT) these U(κ; ε) can be the cross sections or the correlation functions:
in these cases we consider the value of U(κ; ε) to be the corresponding
cross section or correlation function, respectively, as an element of some
space of functions (or distributions). In the latter case we dismiss the extra
dependencies in our notation U(κ; ε), hiding them in the vector space V of
the values of U .
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The general idea of the renormalization is to replace the coupling constants
κ in (1) with some “unphysical” parameters κ′ that are called unrenor-
malized (or, “bare”) coupling constants and set them to be some (still
unknown) functions in the actual physical parameters κ,

κ′ := K(κ; ε) (K(κ; ε) = (Ki(κ; ε))
N
i=1)

depending on ε. Then the renormalization problem is to achieve a finite
limit:

∃ lim
ε→0

U(K(κ; ε); ε) =: lim
ε→0

U ren(κ; ε) =: U ren(κ) . (2)

This limit, namely, is the renormalized physical quantity U ren(κ). There
is somewhat more general concept of renormalization that affects also the
values of U ren(κ; ε):

∃ lim
ε→0

Z(κ; ε) · U(K(κ; ε); ε) =: lim
ε→0

U ren(κ; ε) =: U ren(κ) , (3)

where Z(κ; ε) is an automorphism of V (and “·” stands for its action on V).
Most simply, Z(κ; ε) can be just a numerical factor that reflects the renor-
malization of the “scale of units” in which U is measured. However, we
shall start with the case (2), i.e., without the additional multiplicative
renormalization in (3).

We can proceed further in solving the so stated renormalization problem
within the framework of “perturbation theory”. In this case we consider
U(κ′; ε) as a formal power series in κ′:

U(κ′; ε) = U (0)(ε) +

N∑
i=1

U
(1)
i (ε)κ′i +

N∑
i1,i2 =1

U
(2)
i1,i2

(ε)κ′i1κ
′
i2 + · · · .

We will try to solve the renormalization problem order by order. We assume
that the zeroth and the first orders are free of divergences and are nonzero:

∃ lim
ε→0

U (0)(ε) ̸= 0 , ∃ lim
ε→0

U
(1)
i (ε) ̸= 0 . (4)

If ̸ ∃ lim
ε→0

U
(2)
i1,i2

(ε) we can try with a substitution U(K(κ; ε); ε) with

K(κ; ε) = (Ki(κ; ε))
N
i=1 , Ki(κ; ε) = κi +

N∑
i1,i2 =1

K(2)
i;i1,i2

(ε)κi1κi2 + · · ·

and obtain

U(K(κ; ε); ε) = U (0)(ε) +
N∑

i=1

U
(1)
i (ε)κi

+
N∑

i1,i2 =1

(
U

(2)
i1,i2

(ε) +
N∑

i=1

U
(1)
i (ε)K(2)

i;i1,i2
(ε)

)
κi1κi2 + · · · ,
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i.e., the zeroth and the first orders are not affected and the second order
takes an additive correction. We can try then to choose the latter additive

correction so that it cancels the divergence in U
(2)
i1,i2

(ε). In other words,

U(κ; ε) is perturbatively renormalizable at the second order iff the “divergent

part” of U
(2)
i1,i2

(ε) is representable as a linear combination of first order

terms U
(1)
i (ε) (with ε–dependent coefficients).

In case (3) we set in addition

Z(κ; ε) = 1 +

N∑
i1,i2 =1

Z(2)
i1,i2

(ε)κi1κi2 + · · ·

and we get

Z(κ; ε) · U(K(κ; ε); ε) = U (0)(ε) +

N∑
i=1

U
(1)
i (ε)κi +

N∑
i1,i2 =1

(
U

(2)
i1,i2

(ε)

+
N∑

i=1

U
(1)
i (ε)K(2)

i;i1,i2
(ε) + Z(2)

i1,i2
(ε) · U (0)(ε)

)
κi1κi2 + · · · .

We see now that we get one more additive correction to the second or-

der, Z(2)
i1,i2

(ε) · U (0)(ε), which however can trivialize it (i.e., can cancel it

completely) if we allow Z(2)
i1,i2

(ε) to be an arbitrary automorphism of the

vector space V of values of U(κ; ε). In the case when Z(κ; ε) is a series
with numerical coefficients we get the conclusion that U(κ; ε) is perturba-

tively renormalizable at the second order iff the “divergent part” of U
(2)
i1,i2

(ε)
is representable as a linear combination of first and zeroth order terms of
U(κ; ε).

Then, by induction we assume that we have constructed a sequence of
formal power series U = U1, U2, . . . , UM , . . .:

UM (κ′; ε) =

∞∑
n=0

N∑
i1,...,in =1

U
(n)
M | i1,...,in(ε)κ

′
i1 · · · κ′in

so that
∃ lim

ε→0
U

(n)
M ;i1,...,in

(ε) for n = 0, 1, . . . ,M .

To subtract the divergence at order M + 1 of UM (κ; ε) we perform a sub-
stitution and multiplication by

κ′i = KM | i(κ; ε) = κi +
N∑

i1,...,iM+1 =1

K(M+1)
M | i;i1,...,iM+1

(ε)κi1 · · ·κiM+1 + · · · ,
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ZM (κ; ε) = 1 +
N∑

i1,i2 =1

Z(M+1)
M | i;i1,...,iM+1

(ε)κi1 · · ·κiM+1 + · · · ,

respectively. Then again in the result

UM+1(κ; ε) := ZM (κ; ε) · UM (KM (κ; ε); ε)

the orders below M + 1 are not affected and the (M + 1)st order gets an
additive correction:

U
(M+1)
M+1 | i1,...,iM+1

(ε) = U
(M+1)
M | i1,...,iM+1

(ε)

+

N∑
i=1

U
(1)
i (ε)K(M+1)

M | i;i1,...,iM+1
(ε) + Z(M+1)

M | i1,...,iM+1
(ε) · U (0)(ε) .

We get a similar conclusion: U(κ; ε) is perturbatively renormalizable at the
order M +1 (M = 1, 2, . . .) iff the “divergent part” of the M th order of the
recursively constructed UM (κ, ε) is representable as a linear combination of
first and zeroth order terms of the original U(κ; ε).

In the renormalization of cross sections in QFT we do not use any mul-
tiplicative renormalization as the physical quantity is a probability and is
uniquely normalizable. In this case the sub-leading part in the perturbative
expansion corresponds to a classical scattering. It is free of divergences and
reflects the classical interaction Lagrangian. The renormalizability means
that divergent parts at higher orders in perturbation theory under the above
inductive process are representable as linear combinations of such classical
cross sections.

Further problem that arises in perturbative renormalization is the preser-
vation of additional structures during the renormalization process. For ex-
ample, this can be preservation of a symmetry: we would like to construct
a symmetry action of the type

F (g;κ) · U ren(κ) = U ren(f(g;κ)) , (5)

fi(g;κ) =
∞∑

n=1

N∑
i1,...,in =1

f
(n)
i;i1,...,in

κi1 · · · κin ,

F (g;κ) =
∞∑

n=0

N∑
i1,...,in =1

F
(n)
i1,...,in

κi1 · · · κin ,

f(g1g2;κ) = f(g1; f(g2;κ)) , F (g1g2;κ) = F (g1; f(g2;κ)) · F (g2;κ),

(6)

for every g, g1, g2 belonging to the symmetry group G of the physical model,
where f(g;κ) is an action G via formal diffeomorphisms on κ, which keeps
stable κ = 0 (that is why the sum in the expansion of f(g;κ) begins with
n = 1). The starting point is an action of G up to order 1 in κ.
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The possibility to preserve the symmetry (or other structures) after the
renormalization is generally a cohomological problem related to the am-
biguity of the renormalization procedure. Let us consider this ambiguity.
Note that, if K(κ; ε) is a solution of the renormalization problem (2) and

X(κ) =
∑∞

n=1

∑N
i1,...,in =1 X

(n)
i1,...,in

κi1 · · · κin is an arbitrary formal dif-

feomorphism then K′(κ; ε) = K(X(κ); ε) is again a solution. Similarly, in
the case (3) with a multiplicative renormalization we can additionally ap-
ply some formal series with coefficients belonging to End(V). We conclude
that the renormalized series U ren(κ) is defined, in general, up to a trans-
formation of the form:

U ren(κ) 7→ M(κ) · U ren(X(κ)) . (7)

Thus, the renormalization ambiguity contains at least the group of formal
diffeomorphisms. Let us describe this group. The group multiplication is
the composition of formal power series. Assume we have two such series:

κ′ = X(κ) =

∞∑
n=1

1

n!

N∑
i1,...,in =1

X
(n)
i1,...,in

κi1 · · ·κin ≡
∞∑

n=1

1

n!
X(n)(κ⊗n) ,

κ′′ = Y (κ′) =
∞∑

n=1

1

n!

N∑
i1,...,in =1

Y
(n)
i1,...,in

κ′i1 · · ·κ
′
in ≡

∞∑
n=1

1

n!
Y (n)(κ′ ⊗n) ,

whose coefficients X(n) = (X
(n)
i1,...,in

) = (X
(n)
i;i1,...,in

) ∈ Hom(S(L⊗n), L) (and

similarly Y (n) ∈ Hom(S(L⊗n), L)) are described by symmetric n–linear
maps on the vector space of couplings, L = Rκ1 ⊕ · · · ⊕ Rκn (S(L⊗n)
being the symmetrized tensor product). Note that we have introduced for
convenience an extra 1

n! factors in the series X(κ). Then, the composition
Z(κ) = Y (X(κ)) is given by the formula ([2]):

Z(n) =
∑

P∈Part{1,...,n}

Y (k) ◦ (X(j1)⊗ · · · ⊗X(jk)) ◦ σP , (8)

where the sum is over the set Part{1, . . . , n} of all partitions of the set
{1, . . . , n} and the permutation σP ∈ Sn is defined by

σ−1
P := (i1,1, . . . , i1,j1 , . . . , ik,1, . . . , ik,jk) ,

iℓ,1 < · · · < iℓ,jℓ , i1,1 < i2,2 < · · · < ik,jk ,

for P =
{
{i1,1, . . . , i1,j1}, . . . , {ik,1, . . . , ik,jk}

}
∈ Part{1, . . . , n}

(called pointed unshuffle) and σP acts on L⊗n in the obvious way (by per-
muting the factors). In the case N = 1 the above formula is known as
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Faá-di-Bruno formula. We refer the reader to paper [2] for further infor-
mation about the role of the operads’ theory in the above construction, as
well as, its further generalizations in renormalization theory.

Let us return to problem, stated in Eqs. (5) and (6), of extending sym-
metries on the renormalized perturbation series and describe in sketch the
strategy of its solution. Our consideration will be in the spirit of the Ger-
stenhaber’s theory of deformations of rings ([1]). Since the renormalization
solution U ren(κ) is defined up to a transformation of a form (7) we see that
we can try to built the symmetry actions (6) so that they fulfill (5) for a
given, already constructed, renormalized series U ren(κ). The group actions
up to the first order in κ are the starting point as we assumed in (4) that
these orders are free of divergences and need not to be renormalized.

Let us set f (n)(g) : κ 7→ f (n)(g;κ⊗n), f (n)(g) ∈ Hom(S(L⊗n),L) for n =

1, 2, . . . and similarly, F (n)(g) : κ 7→ F (n)(g;κ⊗n), F (n)(g) ∈ Hom(S(L⊗n),
End(V)) for n = 0, 1, . . . and note from Eq. (6) that its leading orders read

f (1)(g1g2) = f (1)(g1) ◦ f (1)(g2) , F (0)(g1g2) = F (0)(g1) · F (0)(g2) , (9)

F (1)(g1g2) = F (0)(g1) · F (1)(g2) + (F (1)(g1) ◦ f (1)(g2)) · F (0)(g2) (10)

(where “·” stands for the multiplication in End(V) and “◦” stands for
the composition with maps belonging to Hom(S(L⊗n),L) or Hom(S(L⊗n),
End(V))). Equation (9) means that we have two representations of the
symmetry group G: one on the vector space L of couplings, G ∋ g 7→
f (1)(g) ∈ Aut(L), and one on the vector space V where the physical quan-

tity U takes values, G ∋ g 7→ F (0)(g) ∈ Aut(V). Similarly, the leading two
orders in Eq. (5) read

F (0)(g) · U ren,(0) − U ren,(0) = 0 , (11)

F (0)(g) · U ren,(1) + F (1)(g) · U ren,(0) − U ren,(1) ◦ f (1)(g) = 0 .

In particular, U ren,(0) ∈ V is a stable element for the action F (0). In
general, if we fix the data in the first orders: U ren,(k) ≡ U (k), for k = 0, 1,
F (0) and f (1) then we get linear inhomogeneous conditions for the order n
data U ren,(n), F (n) and f (n):

f (1)(g1) ◦ f (n)(g2)− f (n)(g1g2) + f (n)(g1) ◦ f (1)(g2)
⊗n

= polynomial expression in f (2), . . . , f (n−1) , (12)

F (0)(g1) · F (n)(g2)− F (n)(g1g2) + (F (n)(g1) ◦ f (1)(g2)
⊗n) · F (0)(g2)

= polynomial expression in f (2), . . . , f (n−1), F (1), . . . , F (n−1) , (13)

F (0)(g) · U ren,(n) + F (n)(g) · U ren,(0)

− U ren,(1) ◦ f (n)(g)− U ren,(n) ◦ f (1)(g)⊗n
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= polynomial expression in f (2), . . . , f (n−1), F (1), . . . , F (n−1),

U ren,(2), . . . , U ren,(n−1) . (14)

In the left hand sides of the above equations one can recognize certain
cochain spaces of the group G. However, the right hand sides are highly
nonlinear. To improve the latter nonlinearity one can pass from the sym-
metry group G to its Lie algebra g. Then, in the left hand sides of the
“infinitesimal” (i.e., Lie algebra) versions of the above identities we get Lie
algebra cochain spaces of Chevalley–Eilenberg type. Each of these cochain
spaces is a direct sum of three vector subspaces:

Cm
1,n := Maps

(
g∧m,Hom(S(L⊗n),L)

)
,

Cm
2,n := Maps

(
g∧m,Hom(S(L⊗n),End(V))

)
,

Cm
3,n := Maps

(
g∧(m−1),Hom(S(L⊗n),V)

)
,

Cm
12,n := Cm

1,n ⊕ Cm
2,n , Cm

123,n := Cm
12,n ⊕ Cm

3,n .

Then, the right hand sides of Eqs. (12)–(14), taken on the Lie algebra g,
define a differential

d : C1
123,n → C2

123,n , d(C1
12,n) ⊆ C2

12,n , d(C1
1,n) ⊆ C2

1,n

and it can be extended to a differential of a cochain complex. Let us further
introduce

Ξ = Ξ2,1 +

∞∑
n=2

(Ξ1,n + Ξ2,n + Ξ3,n) ∈
∞⊕

n=0

(
Cm
1,n ⊕ Cm

2,n ⊕ Cm
3,n

)
,

which combine the higher order data from the renormalization procedure:

(Ξ1,n)n> 2 = (f (2), f (3), . . .) ,

(Ξ2,n)n> 1 = (F (1), F (2), . . .) ,

(Ξ3,n)n> 2 = (U ren(2), U ren(3), . . .) .

Then, the Lie algebra version of Eqs. (12)–(14) take the form of a Maurer-
Cartan equation:

dΞ +
1

2
[Ξ,Ξ] = 0 , (15)

where the bracket is a Lie super-algebra bracket (Ξ being an odd element):

[Cm1
1,n1

, Cm2
1,n2

]⊆ Cm1+m2
1,n1+n2−1 , [Cm1

2,n1
, Cm2

2,n2
]⊆ Cm1+m2

2,n1+n2
,

[Cm1
1,n1

, Cm2
2,n2

]⊆ Cm1+m2
2,n1+n2−1 , [Cm1

1,n1
, Cm2

3,n2
]⊆ Cm1+m2

3,n1+n2−1 ,

[Cm1
2,n1

, Cm2
3,n2

]⊆ Cm1+m2
3,n1+n2

, [Cm1
3,n1

, Cm2
3,n2

] = 0 .
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Thus, Eq. (15) can be solved inductively in n = 2, 3, . . . as its right hand
side, due to the above grading properties of the bracket, will depend on the
lower orders. The existence of solutions of these equations is controlled by
the second cohomology groups of the above complex and the uniqueness of
the solution is modulo exact corrections.
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