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Abstract

We systematically derive the closed system of equations for linear scalar pertur-
bations in stringy motivated non-local cosmological models. All the equations are
written in manifestly gauge invariant variables.

1. Introduction and summary

Recent observations [1] strongly support that primordial inflation is the
theoretical explanation of how the currently observed Universe was formed
at the early stages. Alongside with observations theoretical approaches also
show how nice inflation can be connected to the nucleosynthesis and subse-
quent appearance of the particle standard model. A number of inflationary
scenarios are reviewed in [2] and references therein, for instance.

Even though inflation is a great model for many reasons it has problems
one of which is the lack of the UV completion. To be more precise it is not
UV-complete in the framework of the Einstein’s General Relativity (GR)
since geodesics are not past-complete. This is a general statement and it
is known as the Big Bang singularity elaborated in [3, 4, 5]. One can find
that alternatives to Big Bang such as “emergent” Universe or bouncing
Universe [6] hit the singularity theorem by Hawking and Penrose [7] as
long as we are in GR and the space-time is of the Friedmann–Lemâıtre–
Robertson–Walker (FLRW) type.

One of the possible resolution is a modification of GR. This can be done
in general in a number of ways and one may have an insight in this using
the review paper [8] and references therein, for example. It is inevitable
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that any modification of gravity introduces higher derivatives and only
special structures like Gauss-Bonnet term or Lovelock terms in general [8, 9]
preserve the second order of the equations of motion but this is applicable
only in more than 4 dimensions. On the other hand finite higher derivatives
lead to ghosts due to the Ostrogradski theorem [10]. Having all orders of
higher derivatives may open a way to evade the Ostrogradski statement and
a successful attempt in this direction was made considering a special class of
gravity modifications where higher curvature corrections are accompanied
with non-local operators [11, 12]. Analysis in those papers shows how
one can construct a ghost-free and asymptotically free modification of GR
featuring a non-singular bouncing solution, which resembles GR in the
infra-red limit. Note that similar approaches involving non-local models
were used in other cosmological and gravity contexts in the literature [13,
14, 15, 16, 17]. The further study of this model [18] has shown that the
model features the expected perturbative spectrum at late times and is
stable with respect to small isotropic inhomogeneous perturbations during
the bounce phase and in parallel a more general model [19] (see also [20])
was proposed and considered in the Minkowski background.

Absolutely the non-local operators is what makes these models novel and
the operators in question are of type of analytic functions of the covariant
d’Alembertian operator 2, i.e. F(2). Note that other theoretically moti-
vated operators such as 1/2 were considered, for instance, in [21, 22] and
references therein. It is important that the initial inspiration for introduc-
ing analytic F(2) operators comes from string field theory (SFT) models
because SFT as the whole theory is a UV-complete non-perturbative de-
scription of strings. We refer the reader to more stringy oriented litera-
ture [28, 23, 24, 25, 26, 27] for the more comprehensive overview of this
aspect. A decent progress was achieved in studying non-local scalar field
models derived from SFT in the cosmological context [29]-[32] as well as
exploration of other aspects of this type of models including their thermo-
dynamics [33, 34, 35]. The major question of rigorous derivation of the
modified GR action involving the non-local operators of interest from the
scratch, i.e. from the closed SFT, is still awaiting for its resolution and this
is beyond the scope of our present study.

In [18] a lot of technical issues were solved for a model which contains the
scalar curvature squared non-local term. The main focus there is pertur-
bations around a bouncing solution. In [19] non-local terms containing the
Ricci and Riemann tensors squared were added but only analyzed around
the Minkowski background. In [36] the efforts of [18, 19] works were joined
and the analysis was extended for a much more general model.

In the present paper we derive the closed system of perturbation equations
for the most general non-local quadratic in curvature gravitational action.
We confine ourselves by considering the FLRW type of the metric and
positive cosmological term Λ. Bouncing or cyclic models of the Universe
[37] try to establish a connection between the perturbative spectrum during
or prior the bounce phase and the spectrum observed in CMB. In order to
do the same in stringy motivated non-local models an appropriate technique
must be developed. This provides us with the additional strong motivation
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for the present study.

As the final result we find out a system of equations which can be solved
at least numerically. This is a closed system of equations obtained for
the first time for this class of models. Surely, we expect a number of
applications of this result since it opens possibilities for the deeper study
of the perturbation spectrum in such non-local cosmologies.

2. Action and equations of motion

We focus on the model described by the following non-local action

S =

∫
d4x

√
−g
(
M2

P

2
R+

λ

2
R2 − Λ

)
, (1)

where
R2 = RF1(2)R+Rµ

νF2(2)R
ν
µ + CµναβF4(2)C

µναβ ,

and hence we limit ourselves with O(R2) corrections. Here the dimension-
ality is manifest and in the sequel all the formulae are written having 4
dimensions in mind, MP is the Planckian mass, Λ is a cosmological con-
stant and λ is a dimensionless parameter measuring the effect of the O(R2)
corrections. The most novel and crucial for our analysis ingredients are
the functions of the covariant d’Alembertian operator FI . For simplicity to
avoid extra complications we assume that these function are analytic with
real coefficients fIn in Taylor series expansion FI =

∑
n≥0 fIn2

n/M2n
∗ .

The new mass scale determines the characteristic scale of the gravity mod-
ification. We assume it universal for all FI and refer the reader to [11] for
a detailed discussion of this new physics parameter. Also apart from the
canonical usage of the Riemann tensor we use the Weyl tensor Cµ

ανβ which

is coming from the Ricci decomposition

Cµα
νβ = Rµα

νβ − 1

2
(δµνR

α
β − δµβR

α
ν +Rµ

ν δ
α
β −Rµ

βδ
α
ν ) +

R

6
(δµν δ

α
β − δµβδ

α
ν ).

In this formula we use slightly unusual position of indexes which is useful
in performing further computations. The reason to use the Weyl tensor
is because Cµ

ανβ = 0 on a conformally flat manifold which is the case for

the FLRW metric. We are focused on the FLRW cosmologies and thus
will benefit out of this. Indeed, it means that the Weyl tensor squared
does not show up in the background at all and only becomes relevant in
perturbations. Moreover, even in perturbations the only non-vanishing
contribution is the one where both Weyl tensors are perturbed and the
non-local functions F4 takes its background form.

This action appears in [19] (eq. (27)) and is the most general covariant
non-local action up to the square in curvature terms and analytic operator
functions FI . We have however less terms because possible contractions of
the covariant derivatives with the Ricci tensor can be eliminated thanks to
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the Bianchi identity or converted to the higher order in curvature terms us-
ing the commutation relations for the covariant derivatives. Also questions
of a ghost-free gravity modification are addressed in [38] using different
action still using non-local operators constructed out of the d’Alembertian
operator. Furthermore we note that working in 4 dimensions we can assume
f20 = 0 because using that the Gauss-Bonnet scalar is a total derivative and
combining this with the Ricci decomposition we can have only R2 when no
d’Alembertian operators are in between. In other words among the terms
without d’Alembertian operator insertions only R2 survives on the FLRW
backgrounds. This does not work for non-constant terms in FI though.

2.1. Model reformulation using G̃µ
ν

The first useful technical step is a passage from the Ricci tensor to the
traceless analog of the Einstein tensor G̃µ

ν . We mention in this regard that
appearance of a combination F1 +

1
4F2 is not spontaneous because we can

rewrite the initial action (1) in terms of G̃µ
ν as follows

S =

∫
d4x

√
−g
(
M2

P

2
R+

λ

2
R̃2 − Λ

)
, (2)

where
R̃2 = RF̃1(2)R+ G̃µ

νF2(2)G̃
ν
µ + CµναβF4(2)C

µναβ ,

and we have used that G̃µ
ν is traceless and have defined F1(2) +

1
4F2(2) =

F̃1(2). Equations of motion for action (2) can be derived by the straight-
forward computation

M2
PG

µ
ν = Tµ

ν − Λδµν −

− 2λG̃µ
ν F̃1(2)R+ 2λ(∇µ∂ν − δµν2)F̃1(2)R− 1

2
λRF2(2)G̃

µ
ν −

− 2λG̃µ
βF2(2)G̃

β
ν +

λ

2
δµν G̃

α
βF2(2)G̃

β
α + (3)

+2λ

(
∇ρ∇νF2(2)G̃

µρ − 1

2
2F2(2)G̃

µ
ν − 1

2
δµν∇σ∇ρF2(2)G̃

σρ

)
+

+λL1
µ
ν − λ

2
δµν
(
L1

σ
σ + L̄1

)
+ λL2

µ
ν − λ

2
δµν
(
L2

σ
σ + L̄2

)
+ 2λ∆̃µ

ν + 2λCµ
ν ,

where we have defined:

L1
µ
ν =

∞∑
n=1

f̃1n

n−1∑
l=0

∂µR(l)∂νR
(n−l−1), L̄1 =

∞∑
n=1

f̃1n

n−1∑
l=0

R(l)R(n−l),

L2
µ
ν =

∞∑
n=1

f2n

n−1∑
l=0

∇µG̃(l)α
β∇νG̃

(n−l−1)β
α, L̄2 =

∞∑
n=1

f2n

n−1∑
l=0

G̃(l)α
βG̃

(n−l)β
α,
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∆̃µ
ν =

∞∑
n=1

f2n

n−1∑
l=0

∇β[G̃
(l)β

γ∇µG̃(n−l−1)γ
ν −∇µG̃(l)β

γ G̃
(n−l−1)γ

ν ],

and f̃1n are coefficients of the Taylor expansion of function F̃1. The Weyl
tensor related part may have an impact now since we are going to consider
perturbations. One can find the relevant part of it is

Cµ
ν = (Rαβ + 2∇α∇β)F4(2)C

αβµ
ν .

Saying relevant we mean only the piece which is obtained by the variation
of one of the Weyl tensor factors in the action. Then we are left with
only one Weyl tensor as it is obvious from the latter formula and further
perturbation of this remaining Weyl tensor factor may produce a non-zero
contribution to the perturbation equations.

The trace equation becomes

−M2
PR = T − 4Λ− 6λ2F̃1(2)R− λ(L1 + 2L̄1)−

− 2λ∇ρ∇µF2(2)G̃
µρ − λ(L2 + 2L̄2) + 2λ∆̃, (4)

and the Weyl tensor related term C turns out to be zero thanks to the full
tracelessness of the Weyl tensor.

This form of action and equations of motion also turns out to be beneficial
for studying perturbations.

3. GR Background

Here we systematically give the important notation to the background level
for studying perturbations.

We work in 4 dimensions, indexes µ, ν run from 0 to 3, G is the Newton
constant and the signature is (−,+,+,+). Indexes a, b will be used for the
spatial coordinates. The metric is chosen to give FLRW background

ds2 = a(η)2(−dη2 + g
(3)
ab dx

adxb), (5)

where η is the conformal time related to the cosmic one as adη = dt and a
is the scale factor. In the sequel we will work in the spatially flat universe

so that g
(3)
ab = δab. This corresponds to setting K = 0 where K is spatial

curvature.

We start with Einstein equations

Gµν = 8πGTµν , (6)

accompanied by the conservation equation

DµT
µ
ν = 0. (7)
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where Dµ is a covariant derivative.

The total background stress tensor is obviously diagonal of the form of a
perfect fluid parameterized as follows

T 0
0 = −ρ, T a

b = pδab , (8)

where ρ is the energy density and p is the pressure density. Background
equations of motion are easily obtained to be

3H2 = 8πGρ, Ḣ = −4πG(ρ+ p), ρ̇+ 3H(ρ+ p) = 0. (9)

Here dot denotes a derivative w.r.t. the cosmic time t and H ≡ ȧ/a. The
following notations will be used in the sequel:

w ≡ p/ρ, c2 ≡ ṗ/ρ̇.

w is the equation of state parameter, c2 is the speed of sound. Constant w
obviously results in c2 = w. We name it an ideal perfect fluid. One useful
relation is

ẇ = −3H(1 + w)(c2 − w).

We assume that in general n non-interacting fluids present resulting in
individual conservation equations

DµT(i)
µ
ν
= 0. (10)

Since there is no interaction among fluids except the minimal coupling we
can introduce a convenient new index I which runs all values of i plus zero
corresponding to collective quantities so that ψ(0) ≡ ψ for some variable ψ.
Using it we can write equations (7) and (10) in a unified form

DµT(I)
µ
ν
= 0. (11)

Although in this particular case Tµ
ν ≡ T(0)

µ
ν
=
∑

i T(i)
µ
ν
in general we shall

use for some variables notations such that collective quantities are not just
sums of individual ones. ρ and p are also easily decomposed into individual
ones as ρ ≡ ρ(0) =

∑
i ρ(i), p ≡ p(0) =

∑
i p(i). The following additional

notations will be used

w(I) ≡ p(I)/ρ(I), c2(I) ≡ ṗ(I)/ρ̇(I).

4. Scalar Perturbations

Perturbations can be separated into scalar, vector and tensor type according
to transformation properties w.r.t. the symmetry group and different types
do not mix at linear order. It turns out that scalar perturbations is the
most difficult part and thus requires much more attention. We proceed
with scalar perturbations therefore giving the complete derivation of the
corresponding equations in a very general setting.
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4.1. Equations

We introduce the spatial scalar harmonics Y (s) defined by an equation

∇a∇aY
(s) + k2Y (s) = 0,

with ∇a a covariant derivative w.r.t. g
(3)
ab . For g

(3)
ab = δab we have

∇a = ∂a where ∂a denotes just an ordinary derivative w.r.t. xa and

Y (s) = Y
(s)
0 e±ikaxa

. Two more scalar harmonics are defined as

Y (s)
a = −1

k
∇aY

(s), Y
(s)
ab =

(
1

k2
∇a∇b +

1

3
g
(3)
ab

)
Y (s).

We will not use these two latter functions explicitly and note them for a
comparison with the literature. Y (s)-s describe the Fourier transform for a

general spatial metric g
(3)
ab .

Scalar metric perturbations are given by 4 arbitrary scalar functions α, β, φ, γ
in the following way

ds2=a(η)2
(
−(1 + 2α)dη2 − 2∂aβdηdx

a + (g
(3)
ab (1 + 2φ) + 2∇a∇bγ)dx

adxb
)
,

(12)

where α(η, xa) = α(η, k)Y (s)(k, x) and similar for β, φ and γ. To avoid
misunderstanding, recall here we use notations of [39].

The scalar perturbations of the collective stress tensor are

T 0
0 = −(ρ+ δρ), T 0

a = −1

k
(ρ+ p)∂av, T

a
b = (p+ δp)δab +

(
∇a∇b

k2
+
δab
3

)
π(s),

(13)

where δρ(η, xa) = δρ(η, k)Y (s)(k, x) and similar for δp, v and π(s). For
individual stress tensors T(i)

µ
ν
we introduce similar quantities accompanied

with index (i) and the following summation rules hold

δρ ≡ δρ(0) =
∑
i

δρ(i), δp ≡ δp(0) =
∑
i

δp(i),

(ρ+ p)v ≡ (ρ(0) + p(0))v(0)=
∑
i

(ρ(i) + p(i))v(i), π
(s) ≡ π

(s)
(0)=

∑
i

π
(s)
(i) .

(14)

The following notations will be used in the sequel:

e(I) ≡ δp(I) − c2(I)δρ(I), δ(I) ≡ δρ(I)/ρ(I).

Constant w(I) results in e(I) = 0. Non-zero eI describes entropic perturba-
tions.
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To write down linear perturbation equations we define

χ ≡ aβ + a2γ̇, κ ≡ 3(−φ̇+Hα) +
k2

a2
χ . (15)

After some algebra one arrives to the following system

Hκ− k2

a2
φ = −4πGδρ, (16a)

−φ̇+Hα = 4πG
a

k
(ρ+ p)v, (16b)

χ̇+Hχ− α− φ = 8πG
a2

k2
π(s), (16c)

κ̇+ 2Hκ+

(
3Ḣ − k2

a2

)
α = 4πG(δρ+ 3δp), (16d)

˙δρ(I) + 3H(δρ(I) + δp(I)) = (ρ(I) + p(I))

(
κ− k

a
v(I) − 3Hα

)
, (16e)

d
dt

(
a4(ρ(I) + p(I))v(I)

)
a4(ρ(I) + p(I))

=
k

a

δp(I) − 2
3π

(s)
(I)

ρ(I) + p(I)
+ α

 , (16f)

where we have in top-down direction linear perturbation of: (00) Einstein
equation, (0a) Einstein equation, off-diagonal components of the ADM
propagator (Ga

b − 1
3δ

a
bG

c
c), Raychaudhuri equation (Gc

c − G0
0), (0) compo-

nent of the conservation equation and (a) component of the conservation
equation respectively. The above system forms a full set of equations with-
out gauge fixing. They are in the so-called gauge-ready form. The two last
equations can be also written as

δ̇I + 3H

(
eI
ρI

+ (c2I − wI)δI

)
= (1 + wI)

(
κ− k

a
vI − 3Hα

)
, (17)

v̇(I) + (1−3c2(I))Hv(I)=
k

a(1 + w(I))

e(I)
ρ(I)

+ c2(I)δ(I) −
2

3

π
(s)
(I)

ρ(I)
+ (1 + w(I))α

 ,

(18)
and

κ− k2

a2
χ = 12πG

a

k
(ρ+ p)v, (19)

is of use.

Under the gauge transformation xµ → xµ + ξµ quantities of interest are
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transformed as

α→ α− ξ̇t, β → β − ξt
a
+ aξ̇, φ→ φ−Hξt, γ → γ − ξ,

χ→ χ− ξt, κ→ κ+

(
3Ḣ − k2

a2

)
ξt, (20)

δρ(I)→ δρ(I)−ρ̇(I)ξt, v(I)→v(I)−
k

a
ξt, δp(I)→δp(I)−ṗ(I)ξt, π

(s)
(I)→π

(s)
(I),

where ξt = aξη and ξa = ∂aξ. We see that π
(s)
(I) are gauge invariant and χ is

spatially gauge invariant. From the system (16) we see that β and γ enter
only in the combination χ resulting in complete spatial gauge invariance.
Although one can pick up a spatial gauge this will neither change the form
of equations nor simplify the succeeding analysis. For instance, we may
choose γ = 0. Thus we have to fix only the temporal gauge. Notice that
fixing α does not fix the temporal gauge completely. Alternatively it may
be more convenient to use gauge invariant quantities. In the rest we will
stick to the gauge invariant approach.

4.2. Gauge invariant equations for collective quantities

Following the lines of Bardeen’s paper [40] we can define gauge invariant
quantities

vχ = v− k

a
χ, ε = δ+3(1+w)H

a

k
v, Φ = α− χ̇, ,Ψ = φ−Hχ . (21)

Then from (16c) one gets

−(Φ + Ψ) = 8πG
a2

k2
π(s), (22)

and from (16a) and (16b) one has

Ψ = 4πGρ
a2

k2
ε . (23)

Equation (16f) for I = 0, i.e. for collective quantities yields

v̇χ +Hvχ =
k

a(1 + w)

(
e

ρ
+ c2ε+Φ(1 + w)− 2π(s)

3ρ

)
. (24)

Equation (16e) for I = 0, i.e. for collective quantities yields

ε̇− 3Hwε+
k

a
(1 + w)vχ + 2H

π(s)

ρ
= 0. (25)
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Now one can express vχ from the latter equation, express Φ through ε and

π(s) using (22) and (23) and substitute all of this into (24). This will result

in a single second order equation for ε and π(s). It reads

ε̈+ ε̇H(2 + 3c2 − 6w) + ε

(
Ḣ(1− 3w)− 15H2w + 9H2c2 +

k2

a2
c2
)

=

= −k
2

a2
e

ρ
− 2H

π̇(s)

ρ
+
π(s)

ρ

(
2H2(3w − 3c2 − 2) +

2k2

3a2

)
. (26)

One can check this equation against (4.9) in [40]. Our’s and Bardeen’s
are in a perfect agreement with each other. To do this comparison one
has to account that dot in Bardeen’s paper denotes a derivative w.r.t. the

conformal time, our e is equal to P0η in [40] and our π(s) is equal to P0π
(0)
T

in [40]. Taking π(s) = 0 one has

ε̈+ε̇H(2 + 3c2 − 6w) + ε

(
Ḣ(1− 3w)−15H2w + 9H2c2 +

k2

a2
c2
)
=−k

2

a2
e

ρ
.

(27)

4.3. Gauge invariant equations for individual quantities

For individual fluids one can define the following gauge invariant quantities:

v(i)χ = v(i) −
k

a
χ, ε(i) = δ(i) + 3(1 + w(i))H

a

k
v(i). (28)

Then for i-th fluid an analog of equation (24) becomes

˙v(i)χ +Hv(i)χ =
k

a(1 + w(i))

e(i)
ρ(i)

+ c2(i)ε(i) +Φ(1 + w(i))−
2π

(s)
(i)

3ρ(i)

 . (29)

We note the only change is that everything that can carry a fluid index (i)
has acquired it. An analog of equation (25) is not so straightforward and
is given by

ε̇(i)−3Hwiε(i)+
k

a
(1+w(i))v(i)χ(1− h)+2H

π
(s)
(i)

ρ(i)
= −k

a
(1+w(i))hvχ . (30)
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where h = 3Ḣ a2

k2
. Further manipulations bring us to a system of equations

for ε(i)

ε̈(i)+ε̇(i)H

(
2 + 3c2(i) − 6w(i) +

ḣ

H(1− h)

)
+

+ ε(i)

(
−3Ḣ(c2(i) + w(i)) + 9H2c2(i)−15H2w(i)−3Hw(i)

ḣ

1− h
+
k2

a2
c2(i)

)
=

= −k
2

a2
e(i)

ρ(i)
+ 3Ḣ

(
e(i)

ρ(i)
−

1 + w(i)

1 + w

e

ρ

)
+ ε̇

1 + w(i)

1 + w

ḣ

1− h
−

− ε
1 + w(i)

1 + w

(
3Hw

ḣ

1− h
+ Ḣ(1 + 3c2)

)
+

+
2k2

3a2

π
(s)
(i)

ρ(i)
− 2

1 + w(i)

a2H

d

dt

 a2H2π
(s)
(i)

ρ(i)(1 + w(i))

−

− 2H
ḣ

1− h

π(s)(i)

ρ(i)
− π(s)

ρ

1 + w(i)

1 + w

 . (31)

Here we note an appearance of a number of singular terms with a common

prefactor ḣ
1−h . Since the above equation is manifestly gauge invariant, one

cannot remove this singularity by means of gauge freedom.

Further one can eliminate collective quantities by virtue of summation rules
(14) and the preceding analysis. The resulting equation is

ε̈(i) + ε̇(i)H
(
2 + 3c2(i) − 6w(i)

)
+

+ ε(i)

(
−3Ḣ(c2(i) + w(i)) + 9H2c2(i) − 15H2w(i) +

k2

a2
c2(i)

)
=

= −k
2

a2
e(i)

ρ(i)
+

12πG

ρ(i)

∑
k

(
(ρ(i) + p(i))e(k) − (ρ(k) + p(k))e(i)

)
+

+4πG(1 + w(i))
∑
k

ρ(k)ε(k)(1 + 3c2(k)) + (32)

+
12πGH

3Ḣ − k2

a2

∑
k

[
ρ(k)(1 + 3c2(k))

(
(1 + w(k))(ε̇(i) − 3Hw(i)ε(i)) −

− (1 + w(i))(ε̇(k) − 3Hw(k)ε(k))
)]

+
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+
2k2

3a2

π
(s)
(i)

ρ(i)
− 2

1 + w(i)

a2H

d

dt

 a2H2π
(s)
(i)

ρ(i)(1 + w(i))

+

+
24πGH2

3Ḣ − k2

a2

∑
k

ρ(k)(1 + 3c2(k))

(1 + w(k))
π
(s)
(i)

ρ(i)
− (1 + w(i))

π
(s)
(k)

ρ(k)

 .

5. Perturbations in the non-local model

5.1. Bianchi identity

We know that the Einstein equations are constrained with the Bianchi iden-
tity which says ∇µG

µ
ν ≡ 0. In our case we have more than just Einstein-

Hilbert Lagrangian but all the additional ingredients we have are covariant
terms. This guarantees that the Bianchi identity holds trivially without
imposing any extra condition. On the other hand this implies thanks to
arbitrariness of coefficients fIn that each separate term does covariantly
conserve. Indeed, each fIn is a coefficient in front of some covariant struc-
ture in the Einstein equations, say τµν . Assuming that only one of f -s coeffi-
cients is non-zero we come to a conclusion that the corresponding structure
must covariantly conserve due to Bianchi identities, i.e. ∇µτ

µ
ν ≡ 0. In other

words it resembles a conserving perfect fluid stress-energy tensor. The same
argument is applicable to all the f -s coefficients as well as their arbitrary
combinations.

The above arguments imply that thanks to Bianchi identity the parts with
different FI covariantly conserve separately. To make use of this we define

T0
µ
ν = Tµ

ν ,

T1
µ
ν = −2λG̃µ

ν F̃1(2)R+ 2λ(∇µ∂ν − δµν2)F̃1(2)R+

+λL1
µ
ν − λ

2
δµν
(
L1

σ
σ + L̄1

)
,

T2
µ
ν = −1

2
λRF2(2)G̃

µ
ν − 2λG̃µ

βF2(2)G̃
β
ν +

λ

2
δµν G̃

α
βF2(2)G̃

β
α +

+2λ

(
∇ρ∇νF2(2)G̃

µρ − 1

2
2F2(2)G̃

µ
ν − 1

2
δµν∇σ∇ρF2(2)G̃

σρ

)
+

+λL2
µ
ν − λ

2
δµν
(
L2

σ
σ + L̄2

)
+ 2λ∆̃µ

ν ,

T4
µ
ν = 2λ (Rαβ + 2∇α∇β)F4(2)C

αβµ
ν .

Now Einstein equations can be written in an extremely concise form

M2
PG

µ
ν =

∑
I

TI
µ
ν − Λδµν (33)
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and moreover we have

∇µTI
µ
ν = 0 for any I.

One recognizes here the system of minimally coupled perfect fluids mini-
mally coupled to gravity.

5.2. Final step

The next step is to split each TI as

TI =
∑
n≥0

fInTIn , (34)

keeping in mind that each component is covariantly conserved on its own.
This is not enough though. since this produces infinitely many perturbation
functions. What is good however, for a given I all the components TIn are
related. One can show by a straightforward computation that

δTIn+1 = (2+ 8H2)δTIn . (35)

This is the most crucial formula in all this study since it allows to write
all the perturbation equations in a closed finite form without introducing
infinitely many unknown functions.

So, schematically, we go from the tensorial form of the last equation to
its components, then we substitute the result in all equations (32) and
derive therefore four equations for ε0,1,2,4 coupled one to each other. This
accomplishes the task of deriving these equations. The next step of studying
them is still very difficult but we hope it is possible at least numerically.
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