Bosonization of Superalgebra U,(sl(N|1))
for an arbitrary level *

Takeo Kojima'

Department of Mathematics and Physics, Faculty of Engineering,
Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, JAPAN

ABSTRACT

We give a bosonization of the quantum affine superalgebra U,(sl(N|1)) for an
arbitrary level & € C. The bosonization of level k € C is completely different
from those of level k = 1. From this bosonization, we induce the Wakimoto
realization whose character coincides vAvith those of the Verma module. We give
the screening that commute with U,(sl(N|1)). Using this screening, we propose
the vertex operator that is the intertwiner among the Wakimoto realization and
typical realization. We study non-vanishing property of the correlation function
defined by a trace of the vertex operators.

1. Introduction

Bosonizations provide a powerful method to construct correlation function
of exactly solvable models. We construct a bosonization of the quantum

affine superalgebra Uq(sAl(N\l)) (N > 2) for an arbitrary level k € C [1, 2].
For the special level £ = 1, bosonizations have been constructed for the

quantum affine algebra U,(g) in many cases g = (ADE)") (BC)W), Ggl),
sI(M|N), osp(2/2)® [3, 4, 5, 6, 7, 8, 9, 10]. Bosonizations of level k € C are
completely different from those of level £ = 1. For an arbitrary level k € C
bosonizations have been studied only for Ug,(sly) [11, 12] and U,(sl(N|1))
[1, 2]. Our construction is based on the ghost-boson system. We need
more consideration to get the Wakimoto realization whose character co-
incides with those of the Verma module. Using &-n system we construct
the Wakimoto realization [13, 14] from our level k bosonization. For an
arbitrary level k # —N + 1 we construct the screening current that com-
mutes with Uy (sl{(N|1)) modulo total difference. By using Jackson integral
and the screening current, we construct the screening that commute with
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Uq,(sl(N1)) [13, 15]. We propose the vertex operator that is the inter-
twiner among the Wakimoto realization and typical realization. By using
the Gelfand-Zetlin basis, we have checked the intertwining property of the
vertex operator for rank N = 2, 3,4 [15]. We balance the background charge
of the vertex operator by using the screening and propose the correlation
function by a trace of them, which gives quantum and super generalization
of Dotsenko-Fateev theory [16].

The paper is organized as follows. In section 2 we review bosonizations

of Uy(sly). In section 3 we construct a bosonization of Uy (sl(N|1)) for an
arbitrary level £ € C. We induce the Wakimoto realization by &-n system.
In section 4 we construct the screening that commute with Uy (sl(N|1)) for
an arbitrary level £ # —N + 1. We propose the vertex operator and the
correlation function.

2. Bosonization : Level k =1 vs. Level £k € C

In this section we review the bosonization of the quantum affine algebra
Uq(sl2). The purpose of this section is to make readers understand that the
bosonization of level k € C is complete different from those of level k = 1.
In what follows let ¢ be a generic complex number 0 < |g| < 1. We use the
standard g-integer notation :

" —q"
mlg = ——.
mle = = — =
First we recall the definition of Uq(sAlg). We recall the Drinfeld realization
of the quantum affine algebra U, (sls).

Definition 2.1 [17] The generators of the quantum affine algebra Uq(sAlg)
are &=, hum, h, ¢ (n € Z,m € Zy). Defining relations are

@,n’?

c: central, [h,hy,] =0,

[2m]q[em],
hma n] = Om+n ;
s hn] = Omtm0—— -

[h, 27 (2)] = £2%(2),

[, 25 (2)] = £ pﬁqqﬂ"”zmxi(z),

(21 — 2 2)2™ (21)a™ (22) = (7221 — 22)a™ (22)7™ (21),

B 1
T(z1), 27 ()] = (4= g Dzizs

X (8(a7 51/ 2)0 (g8 22) — ("1 /22)07 (475 22))

21)x

[z
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where we have used 6(2) =Y, cz 2". We have set the generating function
wt(z) = > gt
nez
¢i(qi%«2) _ qihei(q—qil)zmx) himZ:Fm.

When the center ¢ takes the complex number ¢ = k € C, we call it the
level k representation. We call the realization by the differential operators
the bosonization. Frenkel-Jing [3] constructed the level k = 1 bosonization

of the quantum affine algebra U,(g) for simply-laced g = (ADE)™). Here

we recall the level £ = 1 bosonization of Uq(sAlg). We introduce the boson
an (n € Zyp) and the zero-mode operator 0, o by

[2m]y[m]

[, an] = 4 Sm+n,0 [0,a] = 2.

m

In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.2 [3] A bosonization of the quantum affine algebra Uq(sAlg)
for the level k =1 is given as follows.

c=1, h=0, hy,=ay,,

an :F —-n
aE(z) =:e T Linzo Tl 0" 227 " (@t0)

We have used the normal ordering symbol ::

. _faa (k<0), oo
Dagap = { way (k> 0), sl :=: O := ad.

Next we recall the level k£ bosonization of the quantum affine algebra

Uq(sAlg) [11]. We introduce the bosons and the zero-mode operator ay,, by, ¢y,
Qa, Qp, Q. (n € Z) as follows.

[2m]q[(k + 2)m],

[an’m an] = 6m+n,0 m , [aO7 Qa] = 2(k + 2)7
2mlq|2m ~
b b] = B 9 o, Q1] = -
2mlq|12m -
[Cma Cn] = 6m+nma [CO, Qc] = 4a
m
where a9 = LI~ - ao, by = L - bo, Co = iggql co. It is convenient to

introduce the generating function a(N|z; «).

a - Q
a(N|z;a) = — Z ﬁqln“"z " logz + —a
n#0 q
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In what follows, in order to avoid divergences, we restrict ourselves to the
Fock space of the bosons.

Theorem 2.3 [11] A bosonization of the quantum affine algebra Uq(sAlg)
for the level k € C is given as follows.

c=keC, h=ag+ by,

hy, = @2l g gEr2m= R mly,
—1 —k—2 —k—1
+ — = . ,.-b(2lq z;1)—c(2|q 2;0) .
X Z) = e :
(=) (g—q 1)z (
e b2l F221)—c(2lg7F 3 2;0) :) 7
7 (2) = PEYEDE 21)2 (; pa(k+2lq"2,— E52) —a(k+2]q =22 552) +b(2]z— 1) +¢(2lg 1 2:0) .

_ . palkt2lgTF s = B0 —a(k+2]g 22 52 ) 4b(2lg TRz - 1) e(2lg 2R 320 )

The level k = 1 bosonization is given by ”monomial”. The level k£ € C
bosonization is given by ”sum”. They are completely different.

3. Bosonization of Quantum Superalgebra U,(sl(N|1))

In this section we study the bosonization of the quantum superalgebra
Uqy(sl(N|1)) for an arbitrary level k € C.

3.1. Quantum Superalgebra Uq(sAl(N]l))

In this section we recall the definition of the quantum superalgebra
U,(sI(N[1)). We fix a generic complex number ¢ such that 0 < |g| < 1.
ghe Cartan matrix (A;;)o<q j<n of the affine Lie algebra sI(N|1) is given

y
Aij = (Vi + vig1)0ij — Vibij+1 — Vit10i415-

Here we set 1 = -+ = vy = +,vN+1 = 19y = —. We introduce the
orthonormal basis {¢;[i =1,2,---, N + 1} with the bilinear form, (¢;le;) =
v;0; ;. Define & = ¢; — Nl’jl ;V:Jil €¢;. Note that Z;-V:l €; = 0. The classical
simple roots @; and the classical fundamental weights A; are defined by
i = viei — Vip1€ip1, A = 35516 (1 <4 < N). Introduce the affine
weight Ag and the null root ¢ satisfying (Ag|Ao) = (0]9) = 0, (Apld) = 1,
(Aolei) =0, (d]ei) =0, (1 < i < N). The other affine weights and the affine
roots are given by ag = § — Zévzl aj, a; = a;, Ni = N + Ao, (1 <i < N).
Let P = &Y, ZA; & Z6 and P* = &\, Zh; & Zd the affine sI(N|1) weight
lattice and its dual lattice, respectively.

Definition 3.1 [18/ The quantum affine superalgebra Uq(sAl(N]l)) are
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generated by the generators hi,e;, fi (0 < i < N). The Za-grading of the
generators are |eg| = |fo| = |len| = |fn| = 1 and zero otherwise. The
defining relations are given as follows.

The Cartan-Kac relations: For N > 2

subject to the following relations.

, 0 < 1,7 < N, the generators

g — g
[his hy] = 0, [hisej] = Ajjej, [hi, f3] = —Aijf5, e, [] = 5m’ﬁ‘

The Serre relations: For N > 2, the gemerators subject to the following
relations for 1 <i <N —1, 0 < j < N such that |A; ;| = 1.

[ei, [eis €5]4-1]g = 0, Lfis [fis filg—1lg = 0.

For N > 2, the generators subject to the following relations for0 <1i,j5 < N
such that |A; ;| = 0.

[eiej] =0, [fi, f5] =0.
For N > 3, the Serre relations of fourth degree hold.

[en, [eo, [en, eN—l]qfl]Q] =0, [eo, [e1, [eo, eN]Q]qfl] =

[fNa [f07 [fNa fN—l]q_l]q] = 07 [va [fla [f07 fN]q]q—l} —
For N = 2, the extra Serre relations of fifth degree hold.

9

0
0.

[627 [607 [627 [607 el}qmq*1 = [607 [827 [607 [62? el]qmq*U

[f2, [fo, [f2, [fo, filglllg—1 = [fo, [f2, [fo, [f2, filglllg—1-

Here and throughout this paper, we use the notations
[X,Y]e = XV — (-1)XIWlgy x.

We write [X,Y]1 as [X,Y] for simplicity.

The quantum affine superalgebra U,(sl(N|1)) has the Zj-graded Hopf-

algebra structure. We take the following coproduct
Ae)=ei@l+d"®e,  Alf)=fivg " +10 f
A(hi)) =h; ®1+1® hy,

and the antipode
Slei) = —a e, S(fi)=—fid",  S(hi) =—hi.

The coproduct A satisfies an algebra automorphism A(XY) = A(X)A(Y)
and the antipode S satisfies a Zs-graded algebra anti-automorphism

S(XY) = (=DIXIVIS(Y)S(X). The multiplication rule for the tensor
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product is Zs-graded and is defined for homogeneous elements X, Y, X', Y’ €

Uy(si(N|1)) andv e Vyw e Wby X @Y - X' @Y’ = (-)YINIXX' @YY’

and X @Y -v@w = (—1)YI"I Xy ® Yw, which extends to inhomogeneous

elements through linearity.

Definition 3.2 The quantum superalgebra UQ(Q(N|1)) is the subalge-

bthf Uq(sZ(NH)), that is generated by e1,ea,---,en, f1,fo, -+, fn, and
1,082, LN -

We recall the Drinfeld realization of Uq(sAl(N |1)), that is convenient to
construct bosonizations.

Definition 3.3 [18] The generators of the quantum superalgebra Uq(sAl(N|1))
are x;cn, him, h, ¢ (1 <i < N,n€Z,m € Zyy). Defining relations are
c: central, [hi, hjm] =0,

[A; jm]glem]

[hi,m’ hjm] = qq7c|m|5m+n70’
[h’wx;t(z)] = iAin;'t(z)7
+ [Ai,jm]q —c|m| m .+
[hi,m7xj (2)] = e 2T (2),
- [Aijmlg m_—
[hz‘,m71fj (2)] = T 2 (2),

(21 — g M9 z0)a] (21)a; (22) = (¢4 21 — 20)2] (22)77 (21) for |Aij] # 0,
[x?:(zl)v‘r;t(za)] = 0 for |Ai7j’ =0,

(q_jmi)zm (5(q_621/22)¢;r(q522)—5((.7621/22)1%((1_%22))7
(xft(zl)fﬂii(«z?)%i(z) — (¢ +q D (z)7} (2)a (22) +%~i(2)xii(zl)$ii(22))

+ (21 4> 22) =0, for |A; ;| =1, i # N,

[z (1), (22)] =

where we have used §(z) = Y_,,cz 2. Here we have used the generating
function

i(z) — xjfmz_m_lv

meZ
c _ 71 ) m
d}ii(qiéz) = qihiei(q q )Zm>0 hi+mzT ‘

The relation between two definitions of Uq(sAl(N |1)) are given by

ho=c—(h1+---+ hy), ei:$¢+,07 fi=wz;y for 1 <i<N,

- - - - —hi—hg—-—h
eo = (—Dzyo 230, [T50, 21 1]g1]g—1 g1 N,

fo= qh1+h2+m+hN[' - [[qua xio]qa x;;o]qa e 'mﬁo]q-
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For instance we have the coproduct as follows.

A(him) = him® 7+ qBCTm ® him (m > 0),
A(hi—m) = hi-m® qigcTm +¢ 7 hi—m (m >0).

3.2. Bosonization

In this section we construct bosonizations of quantum superalgebra
Uy(sl(N|1)) for an arbitrary level k € C [2]. We introduce the bosons
and the zero-mode operators a?,, Q4 (m € Z,1 < j < N), b3, Q7 (m €
Z,1<i<j<N+1), cd Qi (mEZ,l <i < j < N) which satisfy

[(k + N = 1)m]q[A; jm]

[afn,a%] = m q6m+n07 [aO7QJ] (k_'_N_l)Al,]:
2
[b59 b9 = —vw; g L6405 jr vy, Q! ’]] —vv;0; 10
'm > Yn Z]m m~+n,0, b V504404 57
2
i ) = g s s QU] = 5,05,
Cm s Cp m b 5,5' Om—+n,05 007 1,5’ 05,55

Q7. Q7 ] =0 N+10j NV =1 (i,5) # (7', 5).

Other commutation relations are zero. In what follows we use the standard
symbol of the normal orderings ::. It is convenient to introduce the gener-

ating function b7 (z2), ¢ (2), b (2), a’.(z) and (gi - Fra Z) z|a) given by

. b . .
b (z) = — Z [Wﬁ 2™ 4 QY + by'logz,
m##0 q
i) cl —m i i,
c (Z):_Z ] 27"+ Q7 + cg’logz,
m7#0 q
WY (2) =g —q7") Y bla " £blogy,
+m>0
@ (2) = +(q—q" Z al 2™+ aélogq,
+m>0
4! Tr @> ['Ylm]q' o [’Yrm]q aﬁn —alm| ,—m
— e — zZlo) = — q z
(55 o) Gl ,go Bumlg— (Brrmlq mlg
71
Q' + ablogz
ﬁl Br( 0708 )

In order to avoid divergence we work on the Fock space defined below. We
introduce the vacuum state |0) # 0 of the boson Fock space by

a;,|0) = b;;7|0) = ¢;7|0) = 0 (m > 0).
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Forpi e CA<i<N),p’eCl<i<j<N+1),piieC
(1<i<j<N), weset

N Min(i,5) (N —1-Max(i,5)) . i ~J
Das Py pe) = edoiimt (N-nwEN-D o Pala
Jesd

%7 )i i,
% 6_21§i<]’§N+1pb @ +Zl§i<j§Npc c |0>
It satisfies

a6|pa7pbapc> = pé|pa7pbvpc>a
b6 |Pas Pos Pe) = Dy [Pas Pbs Pe)s €5 1Pas Pbs Pe) = Do |Pas Do, Pe)-

The boson Fock space F(pa, s, pe) is generated by the bosons af,, b%J | cb
on the vector |pg, pp, pc). We set the space F(pg) by

F(pa) = . F(Pa, Pos Pe)-

py? =—pg’ €2 (1<i<j<N)
piNtlez (1<i<n)

We impose the restriction pZ’j =-—piJ €Z (1 <i<j<N). We construct
a bosonization on the space F(p,).

Theorem 3.4 [2] A bosonization of the quantum superalgebra Uq(sAl(N|1))
for an arbitrary level k € C is given as follows.

c=keC,

N
hi _ CLB + (bf),z-l—l . bf),z) + Z (b%’l B b6+1’l) + bz),N—i—l _ bB—H’N—H,

=1 l=i+1
N L N
hy=aj = (bg" +05 ),
=1
i
i = a7 a4 3 (g GO a0y
=1
N
+ 3 (g~ BHDmlil _ (=(FH=Dlmipi+1ly
I=i+1
_|_q7(§+N)|m|b:';LN+1 _ qf(§+N71)|m|bg1,N+1’
N-1
_N-1 _(k _(k
AN =q 2 IMIG% _ Z(q (2+l)|m|bl,;LN +q (2+l)|m|bf;lN+1),
=1
1 ¢ iAo i—1,,1,i _ 10
x;r(z) =" Ze(b+c)J (@@ 2)+ 3002 (05 (@ )=l (') X
(¢—a Yz =
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" {ebi”l<qf*1z>—<b+c>jvi+1(qu> _ ebf“l(qﬂ'flz)—(bw)ml(qHz)} :

b

i i i i =1, 1,N+1 I,N
ah(2) = Ze(bw)f’N(qﬂ L) (I =T (0T (@) (02)
Jj=1
. k+N-1 ) . .
E+-N—1. eaz_(q +2 Z)_bz,N+1(qk+N—1Z)_b1++1,N+1(qk+N71z)_,’_bz+1,N+1(qlc+Nz) )

z; (2)=¢

-l ktN-1 y o
. Zeai(‘fTz)+(b+c>“+1(q-k—az)+bz”+1(q—k—nz)

_ 1
(g—q 1)z =
| v it gk Lig o~
Xe*blj‘l,n-’-l(q*kfﬂ,«klz) 622:‘74_1(}’7% (q k H_lz)*biz(q k ZZ))
N il —k— i1, e
erz:Hl(bi (g~ F—l2)—bi Ll (gh—lt12))

x (e—bjf<q*kﬂ'z>—<b+c)f’i(q*k*j“z) _ e—b?'ﬁ'<q*'H‘z)—(b+c>jﬂ‘<q*k*f*1z))

. k+N—1 . .
et @ 2 (bt (g )

N i —k— i —k— i —k— i —k—
U DAY Gl U ) B i U i) R U R i A

. k+N-1 o )
(a2 ) (bt (¢ )
N il i+ 1,01 fetl— i, N+1 i+1,N+1 _
XeZl:iJrl(b:— (qk+lz)—b:_+ (qk+l 1Z))+b:_ + (qk+Nz)_b:_+ + (qk+N 12’)
N-1 = piN-1 o .
e CEE R NGRS Ol

i, N+1 i+1,N+1 _ N il i+1,1 _
xebzr (¢" N z)—bY] (@ NI+ 0 (07 (65 2)—b T (¢F T 2))

X (ebi“’”l<qk+jz)—(b+c>i+1»f‘+1(qk+j+1z>

= )

—~ 1 RS al¥(q”
zy(2) = PR > e’
=1

E+N—-1 . . . .
T 2)—b N (g R 2) b N (kT L)

qg—q 1Y)z

N-1 k— e : .
D D Gl G kS S CR)) qul(e—bf;N(q—k—Jz))

i (6_(b+c)j,N(q_k_]-_1z) _ e—bi’N(q*k*jz)—(bww(q*kfﬂlz)) :

k4+N—1 BN -1
N—1.<eaf(f1 2 2) bV N GE AN 1) g N~ 2 Z)bN,N+1(q—k—N+1Z)>'

+q : e -

3.3. Replacement from U,(sl(N|1)) to U,(sl(N|1))

In this section we study the relation between Uy, (sl(N|1)) and Uy (sl(N|1)).
Let us recall the Heisenberg realization of quantum superalgebra Uy, (sl(N|1))
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[1]. We introduce the coordinates z; ;, (1 <i < j < N +1) by

{Z@j (1§i<j§N),
x/l/hj:

0,j (1<i<N,j=N+1). (3.1)

Here z; j are complex variables and 6; y1 are the Grassmann odd variables

that satisfy 0; n4y10; v+1 = 0 and 6; y410; N1 = =05 N110i 41, (8 F# F).

We introduce the differential operators ¥; ; = $i,j%7 (1<i<j<N+1).
¥

Theorem 3.5 [1] We fiz parameters \; € C (1 < i < N). The Heisenberg
realization of Uy(sl(N|1)) is given as follows.

i—1 N
h; = Z(Vﬂ?j,i—Vi+119j,i+1)+>\i—(1/i + V1)V i1+ Z (Vig1Vit1,+1— Vi j41),
Jj=1 j=i+1
i, i
_ 7t vi¥y i —vig191,;
€ = [ﬁj,i—&-l]q q 1= € iVt “*1)7
=1 il
i—1 N+1
i—1 T D Wi 1P 1—vit ) =Nt (vitvig) 9o+ Y (it i—vig1¥i,0)
7,0 = =
fi=) i [0i]aq =i
j=1 Lji
N+1
+ i1 | AN — Vit — E (vi%i) — vig19i41,)
l=i+2 q
- Li,j+1 Ar‘rlejl (iv1Pip1,0—vidi)
- vier———[ir1541]ed =i+1 :
j=it1 1+1,5+1

Here we read z;; = 1 and, for Grassmann odd variables x; j, the expression

1 wative L. — 90
o stands for the derivative T = Pn

We study how to recover the bosonization of the affine superalgebra

U,(sI(N1)) from the Heisenberg realization of U, (sl(N|1)). We make the
following replacement with suitable argument.

0i; — —bY(2)/logg (1<i<j<N+1),

i, i3y
1 (j=N+1).
N { B :e(b+c)i’jF?) : N (j #N +1),
" A ORI i G R O (j=N+1).

Ni = di(2)/logg (1<i<N),
e:taj_(z) _ e:tai_ (=)

(g—q ")z (L=< M),
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From the above replacement, the element h; of the Heisenberg realization
is replaced as following.
S {ea;(z>+2§=1(b¥“(z>biﬁ<z>)+zf i EEE) (<< N,

)

a (2) =30 N () 45V (=), (i = N).

We impose g-shift to variable z of the operators a’, (2), bg’[j (z). For instance,

we have to replace a’, (z) — a(¢F e z). Bridging the gap by the ¢-shift,

we have the bosonizations 1 (%2 z) € U,(sl(N|1)) from ¢ € U, (sl(N|1)).

i et i i c— i c
z/}i(qi%z) _ eazi(qi 5 Z)+Zl:1(bli,q+1(qi(z+ 1)2)7bitl(qi(l+ )z))

i

) ) ) LN+l k(e N—1)
XeZl:iHN(bziJ(qi<c+z>z),b;1=l(qi(c+1—1)z)>+blN+1(qi(c+N>z) by (¢ z)
Y

c+N—-1 _ . ¢
Y (g Ez) = @ T D=L RN @D (02
In this replacement, one element ¢ goes to two elements @/}Z?t (qig z). Hence

this replacement is not a map. Replacements from e;, f; to x;t(z) are given
by similar way, however they are more complicated. See details in [2].

3.4. Wakimoto Realization

In this section we give the Wakimoto realization F(p,) whose character
coincides with those of the Verma module [14]. We introduce the operators

giJ and ni’j (1<i<j §N,m€ Z) by

Z nid zmm=l = e (2) o E9(z Z Ehd ™™ = e .

meZ meZ

The Fourier components n’/ = ¢ %‘fizgzmni’j(z), = ¢ %szlﬁi’j(z)

(m € Z) are well defined on the space F(pa).' We focus our attention on
the operators n;”, 0’] satisfying (n;7)? = 0, (£,7)% = 0. They satisfy

Im(ng’) = Ker(ng’), Im(&57) = Ker(&57), ng”&6” + &7ny? = 1.
We have a direct sum decomposition.
F(pa) - 770’]£OJF(pa) @ 507] l’jF(pa)

Ker(ng”) = 15" §57F (pa), Coker(1iy”) = &7 my"F (pa) = F (pa)/(115° &7 ) F (pa).
We set the operator ng, &y by

m= [ =’ &= ][ &’

1<i<j<N 1<i<j<N
Definition 3.6 [14] We introduce the subspace F(pa) by

‘F(pa) = ﬁofoF(pa)-
We call F(p,) the Wakimoto realization.
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4. Screening and Vertex Operator

In this section we give the screening that commutes with the quantum

superalgebra Uq(sAl (N|1)). We propose the vertex operators and the corre-
lation functions.

4.1. Screening
In this section we give the screening Q; (1 < i < N) that commutes with

the quantum superalgebra Uq(sAl(N |1)) for an arbitrary level k # —N + 1

[15]. The Jackson integral with parameter p € C (Jp| < 1) and s € C* is
defined by

le e}
| 1y = s(1=p) 3 flsp™p™
0 meZ
In order to avoid divergence we work in the Fock space.

Theorem 4.1 [15] The screening Q; commutes with the quantum super-
algebra.

Qi Uy(sU(N[1)] =0 (1<i<N).

We have introduced the screening operators Q; (1 <i < N) as follows.

QZ’ = /SOO N 6_(k+1{7*1ai)(zyk+g7—1 )gl(z) : dpz’ (p — q2(k+N_1))
0
Here we have set the bosonic operators §Z(z) (1<i<N) by

~ 1 N i3 (o N—1—j i (g N—j
Si(2) = ——— : (e7b @R = (be) (a7 z)
@ (¢ — ql)zjzzi;rl (

T NI ) (b

N i+1,1 2,1l i+1,N+1 i, N+1

S @ (N ) —bb (g ) b N () bV (g 1 2)
w el=it1 .

e O R (S P s 1

Sn(z)=—¢*: M)

4.2. Vertex Operator
In this section we introduce the vertex operators ®(z), ®*(z) [15]. Let F
and F' be Uy(sl(N|1)) representation for an arbitrary level k # —N+1. Let
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Vo and V3 S be 2N-dimensional typical representation with a parameters o
[21]. Let {vj}?il be the basis of V,. Let {v] 321 be the dual basis of
VS| satisfying (vilv}) = d;5. Let Vo . and V;f be the evaluation module
and its dual of the typical representation. For instance, the 8-dimensional
representation V. of Uy(sl(3|1)) is given by

h1=FE33— FEs4+ E55 — Eg 6,

ho = Es2 — E33+ Eg¢ — E7 7,

hy = a(BE11+E22)+ (a4 1 B33+ Eya+Es 5+ Ee )+ (a + 2 Er 7+ Egg),
e1 = E34+ Esg,

e2 = Fo 3+ Fg 7,

es = /[a]qE12 — /| + 1g(E35 + Ege) + 1/[a + 2]gEr s,

fi=FEs3+ Eg 5,
fo=E32+ E7g,

f3 = /ladeBar — \/lo + 1g(Bs 3 + Eoa) + \/la+ 2], Bs7,

ho = —aE11+Esa)—(a+ 1) Ee 2+ E33+Es 6+ E77)—(a + 2)(Es 5+ Eg 8),

e) = —Z(\/@E;Ll — \/M(E&Q + E773) + mE&S),
o= 0B TyB + Bur) o+ By

Consider the following intertwiners of Uq(sAl (N|1))-representation [20].
D(2): F—F @Vap, @(2):F—F VS

They are intertwiners in the sense that for any x € Uq(sAl (N|1)),
O(z) - x=A(x) P(2), D*(2) -z=A(x) D*(2).

We expand the intertwining operators.
2N 2N
D(2) :Z{)j(z)@vj, @*(z)zszj(z)@)v;.
Jj=1 J=1

We set the Zs-grading of the intertwiner be |®(z)| = |®*(z)| = 0. For
lo=(1L,2,---IV) € CN and B € C, we set the bosonic operator ¢le(z|f)
by

N 1, Min(i,j) N—1—Max(i,j) ;
Zi,j:1(k+ﬁf—1 N-1 1 o’ (ZW)'

¢ (2]8) =t e
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In order to balance thegbackground chargeh of the vertex operators, we
introduce the product of the screenings oM for t = (t1,t2, -, tn) € NV,

QY = Q.- O
The screening operator o) give rise to the map,
Q" : F(pa) = Flpa +1).
Here f = (51,52, . ,fN) where ¢; = Z;V:l A; jt;.

Theorem 4.2 [15] Fork =a«a # 0,—1,-2,---,—N + 1, bosonizations of
the special components of the vertex operators ®1(z) and ®*)(z) are given
by

i _ k+N—1
B() = QU (V1| BRI,

206 = QU (2|5 ),

where we have used | = —(0,---,0,a + N — 1), I = (0,---,0,0) and
t = (t1,ta,---,tn) € NV. The other components @gt)(z) and @;(t)(z) (1<
§ < 2N) are determined by the intertwining property and are represented by
multiple contour integrals of Drinfeld currents and the special components

@éﬁ% (z) and <I>*(t)(z). We have checked this theorem for N = 2,3, 4.

Here we give additional explanation on the above theorem. The explicit for-
mulae of the intertwining properties ®®(2)-z = A(z)-®®(z) for Uq(gl(3| 1))
are summarized as follows. We have set the Zs-grading of V,, as follows :
[v1] = |vs| = |vs| = |v7| = 0, and [va| = |vs| = |va| = |ug| = 1.

o) (2) = [0 (2), filgr @ (2) = [0 (2), fils
@é‘”(z) = @“)(z) f21q, q»g” (2) = [@9(2), fol,,
2 (z) = — e B (2) = — L @0 (2), flyen
[a +1]4
3{)2) o, 80y = @0(2), foly e
[O‘ + Q]q

The elements f; are written by contour integral of the Drinfeld current

fi=¢ Qﬁ%x;(w). Hence the components <I>§-t) (1 < j < 8) are repre-

sented by multiple contour integrals of Drinfeld currents z; (w) (1 < j < 3)

and the special component <I>( )( ).
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4.3. Correlation Function

In this section we study the correlation function as an application of the
vertex operators . We study non-vanishing property of the correlation
function which is defined to be the trace of the vertex operators over the

Wakimoto module of Uq(SAl(N |1)). We propose the g-Virasoro operator Ly
for k = a # —N + 1 as follows.

Mm@])}KN—l_MmMJ»mbﬂ.
[l [k + N — Dl [(N — Dmlyfm], ™

*ZZ

i,j=1meZ
n Z Min(é, j)(N — 1 —Max(z',j))aj
(k+ N — 1)(N —1) 0
,j=1
1 i,J .
-5 2 2 b ib” +§ > D e el :
1<i<j<N meZ 1<Z<j<N meZ q
+ Z Z bZ N+1 m? bz N1, + Z bz N+1
1<7,<NmEZ [ ]q 1<2<N

The Ly eigenvalue of |l,,0,0) is m(j\\j\—i—lﬁ), where = SN | A; and
A= sz\il lez

Theorem 4.3 [15] For k = a # 0,—1,-2,---,—N + 1, the correlation
function of the vertex operators,

nmd@%ﬁ%“mn~@$WWwa®?me~®?W%0#a

if and only if x5y = (T(s),1,T(s)2:" " T(s),N) € NY (1 < 5 < n) and
Ys) = W)U Us)n) € NV (1 < s < m) satisfy the following
condition.

¢ = n—m)i ) ]
DT T D Y = (N_l)‘”"'l (1<i<N).
s=1
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