Bosonization of Superalgebra $\left.U_{q} \widehat{s l}(N \mid 1)\right)$ for an arbitrary level *

Takeo Kojima ${ }^{\dagger}$
Department of Mathematics and Physics, Faculty of Engineering, Yamagata University, Jonan 4-3-16, Yonezawa 992-8510, JAPAN

Abstract

We give a bosonization of the quantum affine superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \in \mathbf{C}$. The bosonization of level $k \in \mathbf{C}$ is completely different from those of level $k=1$. From this bosonization, we induce the Wakimoto realization whose character coincides with those of the Verma module. We give the screening that commute with $U_{q}(\widehat{s l}(N \mid 1))$. Using this screening, we propose the vertex operator that is the intertwiner among the Wakimoto realization and typical realization. We study non-vanishing property of the correlation function defined by a trace of the vertex operators.

1. Introduction

Bosonizations provide a powerful method to construct correlation function of exactly solvable models. We construct a bosonization of the quantum affine superalgebra $U_{q}(\widehat{s l}(N \mid 1))(N \geq 2)$ for an arbitrary level $k \in \mathbf{C}[1,2]$. For the special level $k=1$, bosonizations have been constructed for the quantum affine algebra $U_{q}(g)$ in many cases $g=(A D E)^{(r)},(B C)^{(1)}, G_{2}^{(1)}$, $\widehat{s l}(M \mid N), \operatorname{osp}(2 \mid 2)^{(2)}[3,4,5,6,7,8,9,10]$. Bosonizations of level $k \in \mathbf{C}$ are completely different from those of level $k=1$. For an arbitrary level $k \in \mathbf{C}$ bosonizations have been studied only for $U_{q}\left(\widehat{s l}_{N}\right)[11,12]$ and $U_{q}(\widehat{s l}(N \mid 1))$ $[1,2]$. Our construction is based on the ghost-boson system. We need more consideration to get the Wakimoto realization whose character coincides with those of the Verma module. Using $\xi-\eta$ system we construct the Wakimoto realization $[13,14]$ from our level k bosonization. For an arbitrary level $k \neq-N+1$ we construct the screening current that commutes with $U_{q}(\widehat{s l}(N \mid 1))$ modulo total difference. By using Jackson integral and the screening current, we construct the screening that commute with

[^0]$U_{q}(\widehat{s l}(N \mid 1))[13,15]$. We propose the vertex operator that is the intertwiner among the Wakimoto realization and typical realization. By using the Gelfand-Zetlin basis, we have checked the intertwining property of the vertex operator for rank $N=2,3,4[15]$. We balance the background charge of the vertex operator by using the screening and propose the correlation function by a trace of them, which gives quantum and super generalization of Dotsenko-Fateev theory [16].
The paper is organized as follows. In section 2 we review bosonizations of $U_{q}\left(\hat{s l}_{2}\right)$. In section 3 we construct a bosonization of $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \in \mathbf{C}$. We induce the Wakimoto realization by $\xi-\eta$ system. In section 4 we construct the screening that commute with $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \neq-N+1$. We propose the vertex operator and the correlation function.

2. Bosonization : Level $k=1$ vs. Level $k \in \mathbf{C}$

In this section we review the bosonization of the quantum affine algebra $U_{q}\left(\hat{s l}_{2}\right)$. The purpose of this section is to make readers understand that the bosonization of level $k \in \mathbf{C}$ is complete different from those of level $k=1$. In what follows let q be a generic complex number $0<|q|<1$. We use the standard q-integer notation :

$$
[m]_{q}=\frac{q^{m}-q^{-m}}{q-q^{-1}} .
$$

First we recall the definition of $U_{q}\left(\widehat{s l}_{2}\right)$. We recall the Drinfeld realization of the quantum affine algebra $U_{q}\left(\hat{s l_{2}}\right)$.

Definition 2.1 [17] The generators of the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$ are $x_{i, n}^{ \pm}, h_{m}, h$, $c\left(n \in \mathbf{Z}, m \in \mathbf{Z}_{\neq 0}\right)$. Defining relations are
$c:$ central, $\left[h, h_{m}\right]=0$,
$\left[h_{m}, h_{n}\right]=\delta_{m+n, 0} \frac{[2 m]_{q}[c m]_{q}}{m}$,
$\left[h, x^{ \pm}(z)\right]= \pm 2 x^{ \pm}(z)$,
$\left[h_{m}, x^{ \pm}(z)\right]= \pm \frac{[2 m]_{q}}{m} q^{\mp \frac{c|m|}{2}} z^{m} x^{ \pm}(z)$,
$\left(z_{1}-q^{ \pm 2} z_{2}\right) x^{ \pm}\left(z_{1}\right) x^{ \pm}\left(z_{2}\right)=\left(q^{ \pm 2} z_{1}-z_{2}\right) x^{ \pm}\left(z_{2}\right) x^{ \pm}\left(z_{1}\right)$,
$\left[x^{+}\left(z_{1}\right), x^{-}\left(z_{2}\right)\right]=\frac{1}{\left(q-q^{-1}\right) z_{1} z_{2}}$
$\times\left(\delta\left(q^{-c} z_{1} / z_{2}\right) \psi^{+}\left(q^{\frac{c}{2}} z_{2}\right)-\delta\left(q^{c} z_{1} / z_{2}\right) \psi^{-}\left(q^{-\frac{c}{2}} z_{2}\right)\right)$.
where we have used $\delta(z)=\sum_{n \in \mathbf{Z}} z^{n}$. We have set the generating function

$$
\begin{aligned}
x^{ \pm}(z) & =\sum_{n \in \mathbf{Z}} x_{n}^{ \pm} z^{-n-1}, \\
\psi^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right) & =q^{ \pm h} e^{ \pm\left(q-q^{-1}\right) \sum_{m>0} h_{ \pm m} z^{\mp m}} .
\end{aligned}
$$

When the center c takes the complex number $c=k \in \mathbf{C}$, we call it the level k representation. We call the realization by the differential operators the bosonization. Frenkel-Jing [3] constructed the level $k=1$ bosonization of the quantum affine algebra $U_{q}(g)$ for simply-laced $g=(A D E)^{(1)}$. Here we recall the level $k=1$ bosonization of $U_{q}\left(\widehat{s l}_{2}\right)$. We introduce the boson $a_{n}\left(n \in \mathbf{Z}_{\neq 0}\right)$ and the zero-mode operator ∂, α by

$$
\left[a_{m}, a_{n}\right]=\frac{[2 m]_{q}[m]_{q}}{m} \delta_{m+n, 0}, \quad[\partial, \alpha]=2 .
$$

In what follows, in order to avoid divergences, we restrict ourselves to the Fock space of the bosons.

Theorem $2.2[3]$ A bosonization of the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$ for the level $k=1$ is given as follows.

$$
\begin{aligned}
& c=1, \quad h=\partial, \quad h_{n}=a_{n}, \\
& x^{ \pm}(z)=: e^{\mp \sum_{n \neq 0} \frac{a_{n}}{[n]_{q}} q^{\frac{n}{2}} z^{-n} \pm(\alpha+\partial)}: .
\end{aligned}
$$

We have used the normal ordering symbol ::

$$
: a_{k} a_{l}:=\left\{\begin{array}{ll}
a_{k} a_{l} & (k<0), \\
a_{l} a_{k} & (k>0),
\end{array} \quad: \alpha \partial:=: \partial \alpha:=\alpha \partial .\right.
$$

Next we recall the level k bosonization of the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)[11]$. We introduce the bosons and the zero-mode operator a_{n}, b_{n}, c_{n}, $Q_{a}, Q_{b}, Q_{c}(n \in \mathbf{Z})$ as follows.

$$
\begin{array}{ll}
{\left[a_{m}, a_{n}\right]=\delta_{m+n, 0} \frac{[2 m]_{q}[(k+2) m]_{q}}{m},} & {\left[\tilde{a}_{0}, Q_{a}\right]=2(k+2),} \\
{\left[b_{m}, b_{n}\right]=-\delta_{m+n, 0} \frac{[2 m]_{q}[2 m]_{q}}{m},} & {\left[\tilde{b}_{0}, Q_{b}\right]=-4,} \\
{\left[c_{m}, c_{n}\right]=\delta_{m+n} \frac{[2 m]_{q}[2 m]_{q}}{m},} & {\left[\tilde{c}_{0}, Q_{c}\right]=4,}
\end{array}
$$

where $\tilde{a}_{0}=\frac{q-q^{-1}}{2 \log q} a_{0}, \tilde{b}_{0}=\frac{q-q^{-1}}{2 \log q} b_{0}, \tilde{c}_{0}=\frac{q-q^{-1}}{2 \log q} c_{0}$. It is convenient to introduce the generating function $a(N \mid z ; \alpha)$.

$$
a(N \mid z ; \alpha)=-\sum_{n \neq 0} \frac{a_{n}}{[N n]_{q}} q^{|n| \alpha} z^{-n}+\frac{\tilde{a}_{0}}{N} \log z+\frac{Q_{a}}{N} .
$$

In what follows, in order to avoid divergences, we restrict ourselves to the Fock space of the bosons.

Theorem 2.3 [11] A bosonization of the quantum affine algebra $U_{q}\left(\widehat{s l}_{2}\right)$ for the level $k \in \mathbf{C}$ is given as follows.
$c=k \in \mathbf{C}, \quad h=a_{0}+b_{0}$,
$h_{m}=q^{2 m-|m|} a_{m}+q^{(k+2) m-\frac{k+2}{2}|m|} b_{m}$,
$x^{+}(z)=\frac{-1}{\left(q-q^{-1}\right) z}\left(: e^{-b\left(2 \mid q^{-k-2} z ; 1\right)-c\left(2 \mid q^{-k-1} z ; 0\right)}:\right.$

$$
\left.: e^{-b\left(2 \mid q^{-k-2} z ; 1\right)-c\left(2 \mid q^{-k-3} z ; 0\right)}:\right),
$$

$x^{-}(z)=\frac{1}{\left(q-q^{-1}\right) z}\left(: e^{a\left(k+2 \mid q^{k} z,-\frac{k+2}{2}\right)-a\left(k+2 \mid q^{-2} z ; \frac{k+2}{2}\right)+b(2 \mid z ;-1)+c\left(2 \mid q^{-1} z ; 0\right)}:\right.$

$$
\left.-: e^{a\left(k+2 \mid q^{-k-4} z ;-\frac{k+2}{2}\right)-a\left(k+2 \mid q^{-2} z ; \frac{k+2}{2}\right)+b\left(2 \mid q^{-2 k-4} z ;-1\right)+c\left(2 \mid q^{-2 k-3} z ; 0\right)}:\right) .
$$

The level $k=1$ bosonization is given by "monomial". The level $k \in \mathbf{C}$ bosonization is given by "sum". They are completely different.

3. Bosonization of Quantum Superalgebra $U_{q}(\widehat{s l}(N \mid 1))$

In this section we study the bosonization of the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \in \mathbf{C}$.

3.1. Quantum Superalgebra $U_{q}(\widehat{s l}(N \mid 1))$

In this section we recall the definition of the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$. We fix a generic complex number q such that $0<|q|<1$. The Cartan matrix $\left(A_{i, j}\right)_{0 \leq i, j \leq N}$ of the affine Lie algebra $\widehat{s l}(N \mid 1)$ is given by

$$
A_{i, j}=\left(\nu_{i}+\nu_{i+1}\right) \delta_{i, j}-\nu_{i} \delta_{i, j+1}-\nu_{i+1} \delta_{i+1, j}
$$

Here we set $\nu_{1}=\cdots=\nu_{N}=+, \nu_{N+1}=\nu_{0}=-$. We introduce the orthonormal basis $\left\{\epsilon_{i} \mid i=1,2, \cdots, N+1\right\}$ with the bilinear form, $\left(\epsilon_{i} \mid \epsilon_{j}\right)=$ $\nu_{i} \delta_{i, j}$. Define $\bar{\epsilon}_{i}=\epsilon_{i}-\frac{\nu_{i}}{N-1} \sum_{j=1}^{N+1} \epsilon_{j}$. Note that $\sum_{j=1}^{N} \bar{\epsilon}_{j}=0$. The classical simple roots $\bar{\alpha}_{i}$ and the classical fundamental weights $\bar{\Lambda}_{i}$ are defined by $\bar{\alpha}_{i}=\nu_{i} \epsilon_{i}-\nu_{i+1} \epsilon_{i+1}, \bar{\Lambda}_{i}=\sum_{j=1}^{i} \bar{\epsilon}_{j}(1 \leq i \leq N)$. Introduce the affine weight Λ_{0} and the null root δ satisfying $\left(\Lambda_{0} \mid \Lambda_{0}\right)=(\delta \mid \delta)=0,\left(\Lambda_{0} \mid \delta\right)=1$, $\left(\Lambda_{0} \mid \epsilon_{i}\right)=0,\left(\delta \mid \epsilon_{i}\right)=0,(1 \leq i \leq N)$. The other affine weights and the affine roots are given by $\alpha_{0}=\delta-\sum_{j=1}^{N} \bar{\alpha}_{j}, \alpha_{i}=\bar{\alpha}_{i}, \Lambda_{i}=\bar{\Lambda}_{i}+\Lambda_{0},(1 \leq i \leq N)$. Let $P=\oplus_{j=1}^{N} \mathbf{Z} \Lambda_{j} \oplus \mathbf{Z} \delta$ and $P^{*}=\oplus_{j=1}^{N} \mathbf{Z} h_{j} \oplus \mathbf{Z} d$ the affine $\widehat{s l}(N \mid 1)$ weight lattice and its dual lattice, respectively.

Definition 3.1 [18] The quantum affine superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ are
generated by the generators $h_{i}, e_{i}, f_{i}(0 \leq i \leq N)$. The \mathbf{Z}_{2}-grading of the generators are $\left|e_{0}\right|=\left|f_{0}\right|=\left|e_{N}\right|=\left|f_{N}\right|=1$ and zero otherwise. The defining relations are given as follows.
The Cartan-Kac relations: For $N \geq 2,0 \leq i, j \leq N$, the generators subject to the following relations.

$$
\left[h_{i}, h_{j}\right]=0,\left[h_{i}, e_{j}\right]=A_{i, j} e_{j},\left[h_{i}, f_{j}\right]=-A_{i, j} f_{j}, \quad\left[e_{i}, f_{j}\right]=\delta_{i, j} \frac{q^{h_{i}}-q^{-h_{i}}}{q-q^{-1}}
$$

The Serre relations: For $N \geq 2$, the generators subject to the following relations for $1 \leq i \leq N-1,0 \leq j \leq N$ such that $\left|A_{i, j}\right|=1$.

$$
\left[e_{i},\left[e_{i}, e_{j}\right]_{q^{-1}}\right]_{q}=0, \quad\left[f_{i},\left[f_{i}, f_{j}\right]_{q^{-1}}\right]_{q}=0
$$

For $N \geq 2$, the generators subject to the following relations for $0 \leq i, j \leq N$ such that $\left|A_{i, j}\right|=0$.

$$
\left[e_{i}, e_{j}\right]=0, \quad\left[f_{i}, f_{j}\right]=0
$$

For $N \geq 3$, the Serre relations of fourth degree hold.

$$
\begin{aligned}
& {\left[e_{N},\left[e_{0},\left[e_{N}, e_{N-1}\right]_{q^{-1}}\right]_{q}\right]=0,} \\
& {\left[f_{N},\left[e_{0},\left[e_{1},\left[e_{N}, e_{N}\right]_{q}\right]_{q^{-1}}\right]=0\right.} \\
& \left.\left.f_{q^{-1}}\right]_{q}\right]=0, \\
& {\left[f_{0},\left[f_{1},\left[f_{0}, f_{N}\right]_{q}\right]_{q^{-1}}\right]=0}
\end{aligned}
$$

For $N=2$, the extra Serre relations of fifth degree hold.

$$
\begin{aligned}
{\left[e_{2},\left[e_{0},\left[e_{2},\left[e_{0}, e_{1}\right]_{q}\right]\right]\right]_{q^{-1}} } & =\left[e_{0},\left[e_{2},\left[e_{0},\left[e_{2}, e_{1}\right]_{q}\right]\right]\right]_{q^{-1}} \\
{\left[f_{2},\left[f_{0},\left[f_{2},\left[f_{0}, f_{1}\right]_{q}\right]\right]\right]_{q^{-1}} } & =\left[f_{0},\left[f_{2},\left[f_{0},\left[f_{2}, f_{1}\right]_{q}\right]\right]\right]_{q^{-1}}
\end{aligned}
$$

Here and throughout this paper, we use the notations

$$
[X, Y]_{\xi}=X Y-(-1)^{|X||Y|} \xi Y X
$$

We write $[X, Y]_{1}$ as $[X, Y]$ for simplicity.
The quantum affine superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ has the \mathbf{Z}_{2}-graded Hopfalgebra structure. We take the following coproduct

$$
\begin{aligned}
& \Delta\left(e_{i}\right)=e_{i} \otimes 1+q^{h_{i}} \otimes e_{i}, \quad \Delta\left(f_{i}\right)=f_{i} \otimes q^{-h_{i}}+1 \otimes f_{i} \\
& \Delta\left(h_{i}\right)=h_{i} \otimes 1+1 \otimes h_{i},
\end{aligned}
$$

and the antipode

$$
S\left(e_{i}\right)=-q^{-h_{i}} e_{i}, \quad S\left(f_{i}\right)=-f_{i} q^{h_{i}}, \quad S\left(h_{i}\right)=-h_{i}
$$

The coproduct Δ satisfies an algebra automorphism $\Delta(X Y)=\Delta(X) \Delta(Y)$ and the antipode S satisfies a \mathbf{Z}_{2}-graded algebra anti-automorphism $S(X Y)=(-1)^{|X||Y|} S(Y) S(X)$. The multiplication rule for the tensor
product is \mathbf{Z}_{2}-graded and is defined for homogeneous elements $X, Y, X^{\prime}, Y^{\prime} \in$ $U_{q}(\widehat{s l}(N \mid 1))$ and $v \in V, w \in W$ by $X \otimes Y \cdot X^{\prime} \otimes Y^{\prime}=(-1)^{|Y|\left|X^{\prime}\right|} X X^{\prime} \otimes Y Y^{\prime}$ and $X \otimes Y \cdot v \otimes w=(-1)^{|Y||v|} X v \otimes Y w$, which extends to inhomogeneous elements through linearity.

Definition 3.2 The quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ is the subalgebra of $U_{q}(\widehat{s l}(N \mid 1))$, that is generated by $e_{1}, e_{2}, \cdots, e_{N}, f_{1}, f_{2}, \cdots, f_{N}$, and $h_{1}, h_{2}, \cdots, h_{N}$.

We recall the Drinfeld realization of $U_{q}(\widehat{s l}(N \mid 1))$, that is convenient to construct bosonizations.

Definition 3.3 [18] The generators of the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ are $x_{i, n}^{ \pm}, h_{i, m}, h, c\left(1 \leq i \leq N, n \in \mathbf{Z}, m \in \mathbf{Z}_{\neq 0}\right)$. Defining relations are $c:$ central, $\left[h_{i}, h_{j, m}\right]=0$,
$\left[h_{i, m}, h_{j, n}\right]=\frac{\left[A_{i, j} m\right]_{q}[c m]_{q}}{m} q^{-c|m|} \delta_{m+n, 0}$,
$\left[h_{i}, x_{j}^{ \pm}(z)\right]= \pm A_{i, j} x_{j}^{ \pm}(z)$,
$\left[h_{i, m}, x_{j}^{+}(z)\right]=\frac{\left[A_{i, j} m\right]_{q}}{m} q^{-c|m|} z^{m} x_{j}^{+}(z)$,
$\left[h_{i, m}, x_{j}^{-}(z)\right]=-\frac{\left[A_{i, j} m\right]_{q}}{m} z^{m} x_{j}^{-}(z)$,
$\left(z_{1}-q^{ \pm A_{i, j}} z_{2}\right) x_{i}^{ \pm}\left(z_{1}\right) x_{j}^{ \pm}\left(z_{2}\right)=\left(q^{ \pm A_{j, i}} z_{1}-z_{2}\right) x_{j}^{ \pm}\left(z_{2}\right) x_{i}^{ \pm}\left(z_{1}\right)$ for $\left|A_{i, j}\right| \neq 0$,
$\left[x_{i}^{ \pm}\left(z_{1}\right), x_{j}^{ \pm}\left(z_{2}\right)\right]=0$ for $\left|A_{i, j}\right|=0$,
$\left[x_{i}^{+}\left(z_{1}\right), x_{j}^{-}\left(z_{2}\right)\right]=\frac{\delta_{i, j}}{\left(q-q^{-1}\right) z_{1} z_{2}}\left(\delta\left(q^{-c} z_{1} / z_{2}\right) \psi_{i}^{+}\left(q^{\frac{c}{2}} z_{2}\right)-\delta\left(q^{c} z_{1} / z_{2}\right) \psi_{i}^{-}\left(q^{-\frac{c}{2}} z_{2}\right)\right)$,
$\left(x_{i}^{ \pm}\left(z_{1}\right) x_{i}^{ \pm}\left(z_{2}\right) x_{j}^{ \pm}(z)-\left(q+q^{-1}\right) x_{i}^{ \pm}\left(z_{1}\right) x_{j}^{ \pm}(z) x_{i}^{ \pm}\left(z_{2}\right)+x_{j}^{ \pm}(z) x_{i}^{ \pm}\left(z_{1}\right) x_{i}^{ \pm}\left(z_{2}\right)\right)$

$$
+\left(z_{1} \leftrightarrow z_{2}\right)=0, \quad \text { for }\left|A_{i, j}\right|=1, i \neq N
$$

where we have used $\delta(z)=\sum_{m \in \mathbf{Z}} z^{m}$. Here we have used the generating function

$$
\begin{aligned}
& x_{j}^{ \pm}(z)=\sum_{m \in \mathbf{Z}} x_{j, m}^{ \pm} z^{-m-1} \\
& \psi_{i}^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right)=q^{ \pm h_{i}} e^{ \pm\left(q-q^{-1}\right) \sum_{m>0} h_{i, \pm m} z^{\mp m}}
\end{aligned}
$$

The relation between two definitions of $U_{q}(\widehat{s l}(N \mid 1))$ are given by

$$
\begin{aligned}
h_{0} & =c-\left(h_{1}+\cdots+h_{N}\right), \quad e_{i}=x_{i, 0}^{+}, \quad f_{i}=x_{i, 0}^{-} \quad \text { for } 1 \leq i \leq N \\
e_{0} & =(-1)\left[x_{N, 0}^{-} \cdots,\left[x_{3,0}^{-},\left[x_{2,0}^{-}, x_{1,1}^{-}\right]_{q^{-1}}\right]_{q^{-1}} \cdots\right]_{q^{-1}} q^{-h_{1}-h_{2}-\cdots-h_{N}} \\
f_{0} & =q^{h_{1}+h_{2}+\cdots+h_{N}}\left[\cdots\left[\left[x_{1,-1}^{+}, x_{2,0}^{+}\right]_{q}, x_{3,0}^{+}\right]_{q}, \cdots x_{N, 0}^{+}\right]_{q}
\end{aligned}
$$

For instance we have the coproduct as follows.

$$
\begin{aligned}
\Delta\left(h_{i, m}\right) & =h_{i, m} \otimes q^{\frac{c m}{2}}+q^{\frac{3 c m}{2}} \otimes h_{i, m} \quad(m>0) \\
\Delta\left(h_{i,-m}\right) & =h_{i,-m} \otimes q^{-\frac{-3 c m}{2}}+q^{-\frac{c m}{2}} \otimes h_{i,-m} \quad(m>0)
\end{aligned}
$$

3.2. Bosonization

In this section we construct bosonizations of quantum superalgebra $U_{q}(\hat{s l}(N \mid 1))$ for an arbitrary level $k \in \mathbf{C}[2]$. We introduce the bosons and the zero-mode operators $a_{m}^{j}, Q_{a}^{j}(m \in \mathbf{Z}, 1 \leq j \leq N), b_{m}^{i, j}, Q_{b}^{i, j}(m \in$ $\mathbf{Z}, 1 \leq i<j \leq N+1), c_{m}^{i, j}, Q_{c}^{i, j}(m \in \mathbf{Z}, 1 \leq i<j \leq N)$ which satisfy

$$
\begin{aligned}
& {\left[a_{m}^{i}, a_{n}^{j}\right]=\frac{[(k+N-1) m]_{q}\left[A_{i, j} m\right]_{q}}{m} \delta_{m+n, 0},\left[a_{0}^{i}, Q_{a}^{j}\right]=(k+N-1) A_{i, j},} \\
& {\left[b_{m}^{i, j}, b_{n}^{i^{\prime}, j^{\prime}}\right]=-\nu_{i} \nu_{j} \frac{[m]_{q}^{2}}{m} \delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \delta_{m+n, 0},\left[b_{0}^{i, j}, Q_{b}^{i^{\prime}, j^{\prime}}\right]=-\nu_{i} \nu_{j} \delta_{i, i^{\prime}} \delta_{j, j^{\prime}},} \\
& {\left[c_{m}^{i, j}, c_{n}^{i^{\prime},^{\prime}}\right]=\frac{[m]_{q}^{2}}{m} \delta_{i, i^{\prime}} \delta_{j, j^{\prime}} \delta_{m+n, 0},\left[c_{0}^{i, j}, Q_{c}^{i^{\prime}, j^{\prime}}\right]=\delta_{i, i^{\prime}} \delta_{j, j^{\prime}},} \\
& {\left[Q_{b}^{i, j}, Q_{b}^{i^{\prime}, j^{\prime}}\right]=\delta_{j, N+1} \delta_{j^{\prime}, N+1} \pi \sqrt{-1} \quad(i, j) \neq\left(i^{\prime}, j^{\prime}\right) .}
\end{aligned}
$$

Other commutation relations are zero. In what follows we use the standard symbol of the normal orderings ::. It is convenient to introduce the generating function $b^{i, j}(z), c^{i, j}(z), b_{ \pm}^{i, j}(z), a_{ \pm}^{j}(z)$ and $\left(\frac{\gamma_{1}}{\beta_{1}} \cdots \frac{\gamma_{r}}{\beta_{r}} a^{i}\right)(z \mid \alpha)$ given by

$$
\begin{aligned}
& b^{i, j}(z)=-\sum_{m \neq 0} \frac{b_{m}^{i, j}}{[m]_{q}} z^{-m}+Q_{b}^{i, j}+b_{0}^{i, j} \log z, \\
& c^{i, j}(z)=-\sum_{m \neq 0} \frac{c_{m}^{i, j}}{[m]_{q}} z^{-m}+Q_{c}^{i, j}+c_{0}^{i, j} \log z, \\
& b_{ \pm}^{i, j}(z)= \pm\left(q-q^{-1}\right) \sum_{ \pm m>0} b_{m}^{i, j} z^{-m} \pm b_{0}^{i, j} \log q, \\
& a_{ \pm}^{j}(z)= \pm\left(q-q^{-1}\right) \sum_{ \pm m>0} a_{m}^{j} z^{-m} \pm a_{0}^{j} \log q, \\
& \left(\frac{\gamma_{1}}{\beta_{1}} \cdots \frac{\gamma_{r}}{\beta_{r}} a^{i}\right)(z \mid \alpha)=-\sum_{m \neq 0} \frac{\left[\gamma_{1} m\right]_{q} \cdots\left[\gamma_{r} m\right]_{q}}{\left[\beta_{1} m\right]_{q} \cdots\left[\beta_{r} m\right]_{q}} \frac{a_{m}^{i}}{[m]_{q}} q^{-\alpha|m|} z^{-m} \\
& \quad+\frac{\gamma_{1} \cdots \gamma_{r}}{\beta_{1} \cdots \beta_{r}}\left(Q_{a}^{i}+a_{0}^{i} \log z\right) .
\end{aligned}
$$

In order to avoid divergence we work on the Fock space defined below. We introduce the vacuum state $|0\rangle \neq 0$ of the boson Fock space by

$$
a_{m}^{i}|0\rangle=b_{m}^{i, j}|0\rangle=c_{m}^{i, j}|0\rangle=0 \quad(m \geq 0)
$$

For $p_{a}^{i} \in \mathbf{C}(1 \leq i \leq N), p_{b}^{i, j} \in \mathbf{C}(1 \leq i<j \leq N+1), p_{c}^{i, j} \in \mathbf{C}$ $(1 \leq i<j \leq N)$, we set

$$
\begin{aligned}
\left|p_{a}, p_{b}, p_{c}\right\rangle & =e^{\sum_{i, j=1}^{N} \frac{\operatorname{Min}(i, j)(N-1-\operatorname{Max}(i, j))}{(N-1)(k+N-1)} p_{a}^{i} Q_{a}^{j}} \\
& \times e^{-\sum_{1 \leq i<j \leq N+1} p_{b}^{i, j} Q_{b}^{i, j}+\sum_{1 \leq i<j \leq N} p_{c}^{i, j} Q_{c}^{i, j}}|0\rangle .
\end{aligned}
$$

It satisfies

$$
\begin{aligned}
& a_{0}^{i}\left|p_{a}, p_{b}, p_{c}\right\rangle=p_{a}^{i}\left|p_{a}, p_{b}, p_{c}\right\rangle \\
& b_{0}^{i, j}\left|p_{a}, p_{b}, p_{c}\right\rangle=p_{b}^{i, j}\left|p_{a}, p_{b}, p_{c}\right\rangle, c_{0}^{i, j}\left|p_{a}, p_{b}, p_{c}\right\rangle=p_{c}^{i, j}\left|p_{a}, p_{b}, p_{c}\right\rangle
\end{aligned}
$$

The boson Fock space $F\left(p_{a}, p_{b}, p_{c}\right)$ is generated by the bosons $a_{m}^{i}, b_{m}^{i, j}, c_{m}^{i, j}$ on the vector $\left|p_{a}, p_{b}, p_{c}\right\rangle$. We set the space $F\left(p_{a}\right)$ by

$$
F\left(p_{a}\right)=\bigoplus_{\substack{i, j \\ p_{b}^{i, j}=-p_{c}^{i, j} \in \mathbf{Z}(1 \leq i<j \leq N) \\ p_{b}^{i, N+1} \in \mathbf{Z}(1 \leq i \leq N)}} F\left(p_{a}, p_{b}, p_{c}\right)
$$

We impose the restriction $p_{b}^{i, j}=-p_{c}^{i, j} \in \mathbf{Z}(1 \leq i<j \leq N)$. We construct a bosonization on the space $F\left(p_{a}\right)$.

Theorem 3.4 [2] A bosonization of the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \in \mathbf{C}$ is given as follows.
$c=k \in \mathbf{C}$,
$h_{i}=a_{0}^{i}+\sum_{l=1}^{i}\left(b_{0}^{l, i+1}-b_{0}^{l, i}\right)+\sum_{l=i+1}^{N}\left(b_{0}^{i, l}-b_{0}^{i+1, l}\right)+b_{0}^{i, N+1}-b_{0}^{i+1, N+1}$,
$h_{N}=a_{0}^{N}-\sum_{l=1}^{N-1}\left(b_{0}^{l, N}+b_{0}^{l, N+1}\right)$,
$h_{i, m}=q^{-\frac{N-1}{2}|m|} a_{m}^{i}+\sum_{l=1}^{i}\left(q^{-\left(\frac{k}{2}+l-1\right)|m|} b_{m}^{l, i+1}-q^{-\left(\frac{k}{2}+l\right)|m|} b_{m}^{l, i}\right)$
$+\sum_{l=i+1}^{N}\left(q^{-\left(\frac{k}{2}+l\right)|m|} b_{m}^{i, l}-q^{-\left(\frac{k}{2}+l-1\right)|m|} b_{m}^{i+1, l}\right)$
$+q^{-\left(\frac{k}{2}+N\right)|m|} b_{m}^{i, N+1}-q^{-\left(\frac{k}{2}+N-1\right)|m|} b_{m}^{i+1, N+1}$,
$h_{N, m}=q^{-\frac{N-1}{2}|m|} a_{m}^{N}-\sum_{l=1}^{N-1}\left(q^{-\left(\frac{k}{2}+l\right)|m|} b_{m}^{l, N}+q^{-\left(\frac{k}{2}+l\right)|m|} b_{m}^{l, N+1}\right)$,
$x_{i}^{+}(z)=\frac{1}{\left(q-q^{-1}\right) z}: \sum_{j=1}^{i} e^{(b+c)^{j, i}\left(q^{j-1} z\right)+\sum_{l=1}^{j-1}\left(b_{+}^{l, i+1}\left(q^{l-1} z\right)-b_{+}^{l, i}\left(q^{l} z\right)\right)} \times$

$$
\begin{aligned}
& x_{N}^{+}(z)=: \sum_{j=1}^{N} e^{(b+c)^{j, N}\left(q^{j-1} z\right)+b^{j, N+1}\left(q^{j-1} z\right)-\sum_{l=1}^{j-1}\left(b_{+}^{l, N+1}\left(q^{l} z\right)+b_{+}^{l, N}\left(q^{l} z\right)\right)}:, \\
& x_{i}^{-}(z)=q^{k+N-1}: e^{a_{+}^{i}\left(q^{\frac{k+N-1}{2}} z\right)-b^{i, N+1}\left(q^{k+N-1} z\right)-b_{+}^{i+1, N+1}\left(q^{k+N-1} z\right)+b^{i+1, N+1}\left(q^{k+N_{z}} z\right)}: \\
& +\frac{1}{\left(q-q^{-1}\right) z}:\left\{\sum_{j=1}^{i-1} e^{a_{-}^{i}\left(q^{-\frac{k+N-1}{2}} z\right)+(b+c)^{j, i+1}\left(q^{-k-j} z\right)+b_{-}^{i, n+1}\left(q^{-k-n} z\right), ~}\right. \\
& \times e^{-b_{-}^{i+1, n+1}\left(q^{-k-n+1} z\right)} e^{\sum_{l=j+1}^{i}\left(b_{-}^{l, i+1}\left(q^{-k-l+1} z\right)-b_{-}^{l, i}\left(q^{-k-l} z\right)\right)} \\
& \times e^{\sum_{l=i+1}^{N}\left(b_{-}^{i, l}\left(q^{-k-l} z\right)-b_{-}^{i+1, l}\left(q^{-k-l+1} z\right)\right)} \\
& \times\left(e^{\left.\left.-b_{-}^{j, i}\left(q^{-k-j} z\right)-(b+c)^{j, i}\left(q^{-k-j+1} z\right)-e^{-b_{+}^{j, i}\left(q^{-k-j} z\right)-(b+c)^{j, i}\left(q^{-k-j-1} z\right)}\right)\right) ~(o x)}\right. \\
& +e^{a_{-}^{i}}\left(q^{-\frac{k+N-1}{2}} z\right)+(b+c)^{i, i+1}\left(q^{-k-i} z\right) \\
& \times e^{\sum_{l=i+1}^{N}\left(b_{-}^{i, l}\left(q^{-k-l} z\right)-b_{-}^{i+1, l}\left(q^{-k-l+1} z\right)\right)+b_{-}^{i, N+1}\left(q^{-k-N} z\right)-b_{-}^{i+1, N+1}\left(q^{-k-N+1} z\right)} \\
& -e^{a_{+}^{i}\left(q^{\frac{k+N-1}{2}} z\right)+(b+c)^{i, i+1}\left(q^{k+i} z\right)} \\
& \times e^{\sum_{l=i+1}^{N}\left(b_{+}^{i, l}\left(q^{k+l} z\right)-b_{+}^{i+1, l}\left(q^{k+l-1} z\right)\right)+b_{+}^{i, N+1}\left(q^{k+N} z\right)-b_{+}^{i+1, N+1}\left(q^{k+N-1} z\right)} \\
& -\sum_{j=i+1}^{N-1} e^{a_{+}^{i}\left(q^{\frac{k+N-1}{2}} z\right)+(b+c)^{i, j+1}\left(q^{k+j} z\right)} \\
& \times e^{b_{+}^{i, N+1}}\left(q^{k+N} z\right)-b_{+}^{i+1, N+1}\left(q^{k+N-1} z\right)+\sum_{l=j+1}^{N}\left(b_{+}^{i, l}\left(q^{k+l} z\right)-b_{+}^{i+1, l}\left(q^{k+l-1} z\right)\right) \\
& \times\left(e^{b_{+}^{i+1, j+1}}\left(q^{k+j} z\right)-(b+c)^{i+1, j+1}\left(q^{k+j+1} z\right)\right. \\
& \left.\left.-e^{b_{-}^{i+1, j+1}}\left(q^{k+j} z\right)-(b+c)^{i+1, j+1}\left(q^{k+j-1} z\right)\right)\right\}: . \\
& x_{N}^{-}(z)=\frac{1}{\left(q-q^{-1}\right) z}:\left\{\sum_{j=1}^{N-1} e^{a_{-}^{N}\left(q^{-\frac{k+N-1}{2}} z\right)-b_{+}^{j, N+1}\left(q^{-k-j} z\right)-b^{j, N+1}\left(q^{-k-j-1} z\right)}\right. \\
& \times e^{-\sum_{l=j+1}^{N-1}\left(b_{-}^{l, N}\left(q^{-k-l} z\right)+b_{-}^{l, N+1}\left(q^{-k-l} z\right)\right)} q^{j-1}\left(e^{-b_{+}^{j, N}\left(q^{-k-j} z\right)}\right) \\
& \times q^{j-1}\left(e^{\left.-(b+c)^{j, N}\left(q^{-k-j-1} z\right)-e^{-b_{-}^{j, N}\left(q^{-k-j} z\right)-(b+c)^{j, N}\left(q^{-k-j+1} z\right)}\right): ~: ~}\right. \\
& +q^{N-1}:\left(e^{a_{+}^{N}\left(q^{\frac{k+N-1}{2}} z\right)-b^{N, N+1}\left(q^{k+N-1} z\right)} e^{a_{-}^{N}\left(q^{-\frac{k+N-1}{2}} z\right)-b^{N, N+1}\left(q^{-k-N+1} z\right)}\right): .
\end{aligned}
$$

3.3. Replacement from $U_{q}(s l(N \mid 1))$ to $U_{q}(\widehat{s l}(N \mid 1))$

In this section we study the relation between $U_{q}(s l(N \mid 1))$ and $U_{q}(\widehat{s l}(N \mid 1))$.
Let us recall the Heisenberg realization of quantum superalgebra $U_{q}(\operatorname{sl}(N \mid 1))$
[1]. We introduce the coordinates $x_{i, j},(1 \leq i<j \leq N+1)$ by

$$
x_{i, j}=\left\{\begin{array}{cc}
z_{i, j} & (1 \leq i<j \leq N), \tag{3..1}\\
\theta_{i, j} & (1 \leq i \leq N, j=N+1) .
\end{array}\right.
$$

Here $z_{i, j}$ are complex variables and $\theta_{i, N+1}$ are the Grassmann odd variables that satisfy $\theta_{i, N+1} \theta_{i, N+1}=0$ and $\theta_{i, N+1} \theta_{j, N+1}=-\theta_{j, N+1} \theta_{i, N+1},(i \neq j)$. We introduce the differential operators $\vartheta_{i, j}=x_{i, j} \frac{\partial}{\partial x_{i, j}},(1 \leq i<j \leq N+1)$.
Theorem 3.5 [1] We fix parameters $\lambda_{i} \in \mathbf{C}(1 \leq i \leq N)$. The Heisenberg realization of $U_{q}(s l(N \mid 1))$ is given as follows.

$$
\begin{aligned}
h_{i}= & \sum_{j=1}^{i-1}\left(\nu_{i} \vartheta_{j, i}-\nu_{i+1} \vartheta_{j, i+1}\right)+\lambda_{i}-\left(\nu_{i}+\nu_{i+1}\right) \vartheta_{i, i+1}+\sum_{j=i+1}^{N}\left(\nu_{i+1} \vartheta_{i+1, j+1}-\nu_{i} \vartheta_{i, j+1}\right), \\
e_{i}= & \sum_{j=1}^{i} \frac{x_{j, i}}{x_{j, i+1}}\left[\vartheta_{j, i+1}\right]_{q} q^{\sum_{l=1}^{j-1}\left(\nu_{i} \vartheta_{l, i}-\nu_{i+1} \vartheta_{l, i+1}\right)}, \\
f_{i}= & \sum_{j=1}^{i-1} \nu_{i} \frac{x_{j, i+1}}{x_{j, i}}\left[\vartheta_{j, i}\right]_{q} \sum^{\sum^{i=j+1}} \sum_{j+1}^{i-1}\left(\nu_{i+1} \vartheta_{l, i+1}-\nu_{i} \vartheta_{l, i}\right)-\lambda_{i}+\left(\nu_{i}+\nu_{i+1}\right) \vartheta_{i, i+1}+\sum_{l=i+2}^{N+1}\left(\nu_{i} \vartheta_{i, l}-\nu_{i+1} \vartheta_{i+1, l}\right) \\
& \quad+x_{i, i+1}\left[\lambda_{i}-\nu_{i} \vartheta_{i, i+1}-\sum_{l=i+2}^{N+1}\left(\nu_{i} \vartheta_{i, l}-\nu_{i+1} \vartheta_{i+1, l}\right)\right]_{q} \\
& \quad-\sum_{j=i+1}^{N} \nu_{i+1} \frac{x_{i, j+1}}{x_{i+1, j+1}}\left[\vartheta_{i+1, j+1}\right]_{q} q^{\lambda_{i}+\sum_{l=j+1}^{N+1}\left(\nu_{i+1} \vartheta_{i+1, l}-\nu_{i} \vartheta_{i, l}\right)} .
\end{aligned}
$$

Here we read $x_{i, i}=1$ and, for Grassmann odd variables $x_{i, j}$, the expression $\frac{1}{x_{i, j}}$ stands for the derivative $\frac{1}{x_{i, j}}=\frac{\partial}{\partial x_{i, j}}$.
We study how to recover the bosonization of the affine superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ from the Heisenberg realization of $U_{q}(s l(N \mid 1))$. We make the following replacement with suitable argument.

$$
\begin{aligned}
\vartheta_{i, j} & \rightarrow-b_{ \pm}^{i, j}(z) / \log q \quad(1 \leq i<j \leq N+1), \\
{\left[\vartheta_{i, j}\right]_{q} } & \rightarrow\left\{\begin{array}{cc}
\frac{e^{ \pm b_{+}^{i, j}(z)}-e^{ \pm b_{-}^{i, j}(z)}}{\left(q-q^{-1}\right) z} \quad(j \neq N+1), \\
1 & (j=N+1) .
\end{array}\right. \\
x_{i, j} & \rightarrow\left\{\begin{array}{cc}
: e^{(b+c)^{i, j}(z)}: & (j \neq N+1), \\
: e^{-b^{i, j}(z)}: \text { or }: e^{-b_{ \pm}^{i, j}\left(q^{ \pm 1 z} z\right)-b^{i, j}(z)}: \quad & (j=N+1) .
\end{array}\right. \\
\lambda_{i} & \rightarrow a_{ \pm}^{i}(z) / \log q \quad(1 \leq i \leq N), \\
{\left[\lambda_{i}\right]_{q} } & \rightarrow \frac{e^{ \pm a_{+}^{i}(z)}-e^{ \pm a_{-}^{i}(z)}}{\left(q-q^{-1}\right) z} \quad(1 \leq i \leq N) .
\end{aligned}
$$

From the above replacement, the element h_{i} of the Heisenberg realization is replaced as following.
$q^{h_{i}} \rightarrow\left\{\begin{array}{cl}e^{a_{ \pm}^{i}(z)+\sum_{l=1}^{i}\left(b_{ \pm}^{l, i+1}(z)-b_{ \pm}^{l, i}(z)\right)+\sum_{l=i+1}^{N}\left(b_{ \pm}^{i, l}(z)-b_{ \pm}^{i+1, l}(z)\right)}, & (1 \leq i \leq N-1), \\ e^{a_{ \pm}^{N}(z)-\sum_{l=1}^{N-1}\left(b_{ \pm}^{l}(z)+b_{ \pm}^{l, N+1}(z)\right),} & (i=N) .\end{array}\right.$
We impose q-shift to variable z of the operators $a_{ \pm}^{i}(z), b_{ \pm}^{i, j}(z)$. For instance, we have to replace $a_{ \pm}^{i}(z) \rightarrow a_{ \pm}^{i}\left(q^{ \pm \frac{c+N-1}{2}} z\right)$. Bridging the gap by the q-shift, we have the bosonizations $\psi_{i}^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right) \in U_{q}(\widehat{s l}(N \mid 1))$ from $q^{h_{i}} \in U_{q}(s l(N \mid 1))$.

$$
\begin{aligned}
& \psi_{i}^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right)=e^{a_{ \pm}^{i}\left(q^{\frac{a+N-1}{2}} z\right)+\sum_{l=1}^{i}\left(b_{ \pm}^{l i+1}\left(q^{ \pm(l+c-1)} z\right)-b_{ \pm}^{h^{i}}\left(q^{ \pm(l+c)} z\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{N}^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right)=e^{a_{ \pm}^{N}\left(q^{ \pm \frac{c+N-1}{2}} z\right)-\sum_{l=1}^{N-1}\left(b_{ \pm}^{l, N}\left(q^{ \pm(c+l)} z\right)+b_{ \pm}^{l^{l} N+1}\left(q^{ \pm(c+l)} z\right)\right)} .
\end{aligned}
$$

In this replacement, one element $q^{h_{i}}$ goes to two elements $\psi_{i}^{ \pm}\left(q^{ \pm \frac{c}{2}} z\right)$. Hence this replacement is not a map. Replacements from e_{i}, f_{i} to $x_{i}^{ \pm}(z)$ are given by similar way, however they are more complicated. See details in [2].

3.4. Wakimoto Realization

In this section we give the Wakimoto realization $\mathcal{F}\left(p_{a}\right)$ whose character coincides with those of the Verma module [14]. We introduce the operators $\xi_{m}^{i, j}$ and $\eta_{m}^{i, j}(1 \leq i<j \leq N, m \in \mathbf{Z})$ by

$$
\eta^{i, j}(z)=\sum_{m \in \mathbf{Z}} \eta_{m}^{i, j} z^{-m-1}=: e^{c^{i, j}(z)}:, \quad \xi^{i, j}(z)=\sum_{m \in \mathbf{Z}} \xi_{m}^{i, j} z^{-m}=: e^{-c^{i, j}(z)}: .
$$

The Fourier components $\eta_{m}^{i, j}=\oint \frac{d z}{2 \pi \sqrt{-1}} z^{m} \eta^{i, j}(z), \xi_{m}^{i, j}=\oint \frac{d z}{2 \pi \sqrt{-1}} z^{m-1} \xi^{i, j}(z)$ $(m \in \mathbf{Z})$ are well defined on the space $F\left(p_{a}\right)$. We focus our attention on the operators $\eta_{0}^{i, j}, \xi_{0}^{i, j}$ satisfying $\left(\eta_{0}^{i, j}\right)^{2}=0,\left(\xi_{0}^{i, j}\right)^{2}=0$. They satisfy

$$
\operatorname{Im}\left(\eta_{0}^{i, j}\right)=\operatorname{Ker}\left(\eta_{0}^{i, j}\right), \operatorname{Im}\left(\xi_{0}^{i, j}\right)=\operatorname{Ker}\left(\xi_{0}^{i, j}\right), \eta_{0}^{i, j} \xi_{0}^{i, j}+\xi_{0}^{i, j} \eta_{0}^{i, j}=1 .
$$

We have a direct sum decomposition.

$$
\begin{aligned}
& F\left(p_{a}\right)=\eta_{0}^{i, j} \xi_{0}^{i, j} F\left(p_{a}\right) \oplus \xi_{0}^{i, j} \eta_{0}^{i, j} F\left(p_{a}\right), \\
& \operatorname{Ker}\left(\eta_{0}^{i, j}\right)=\eta_{0}^{i, j} \xi_{0}^{i, j} F\left(p_{a}\right), \operatorname{Coker}\left(\eta_{0}^{i, j}\right)=\xi_{0}^{i, j} \eta_{0}^{i, j} F\left(p_{a}\right)=F\left(p_{a}\right) /\left(\eta_{0}^{i, j} \xi_{0}^{i, j}\right) F\left(p_{a}\right) .
\end{aligned}
$$

We set the operator η_{0}, ξ_{0} by

$$
\eta_{0}=\prod_{1 \leq i<j \leq N} \eta_{0}^{i, j}, \quad \xi_{0}=\prod_{1 \leq i<j \leq N} \xi_{0}^{i, j} .
$$

Definition 3.6[14] We introduce the subspace $\mathcal{F}\left(p_{a}\right)$ by

$$
\mathcal{F}\left(p_{a}\right)=\eta_{0} \xi_{0} F\left(p_{a}\right) .
$$

We call $\mathcal{F}\left(p_{a}\right)$ the Wakimoto realization.

4. Screening and Vertex Operator

In this section we give the screening that commutes with the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$. We propose the vertex operators and the correlation functions.

4.1. Screening

In this section we give the screening $\mathcal{Q}_{i}(1 \leq i \leq N)$ that commutes with the quantum superalgebra $U_{q}(\widehat{s l}(N \mid 1))$ for an arbitrary level $k \neq-N+1$ [15]. The Jackson integral with parameter $p \in \mathbf{C}(|p|<1)$ and $s \in \mathbf{C}^{*}$ is defined by

$$
\int_{0}^{s \infty} f(z) d_{p} z=s(1-p) \sum_{m \in \mathbf{Z}} f\left(s p^{m}\right) p^{m} .
$$

In order to avoid divergence we work in the Fock space.
Theorem 4.1 [15] The screening \mathcal{Q}_{i} commutes with the quantum superalgebra.

$$
\left[\mathcal{Q}_{i}, U_{q}(\widehat{s l}(N \mid 1))\right]=0 \quad(1 \leq i \leq N) .
$$

We have introduced the screening operators $\mathcal{Q}_{i}(1 \leq i \leq N)$ as follows.

$$
\mathcal{Q}_{i}=\int_{0}^{s \infty}: e^{-\left(\frac{1}{k+N-1} a^{i}\right)\left(z \left\lvert\, \frac{k+N-1}{2}\right.\right)} \widetilde{S}_{i}(z): d_{p} z, \quad\left(p=q^{2(k+N-1)}\right) .
$$

Here we have set the bosonic operators $\widetilde{S}_{i}(z)(1 \leq i \leq N)$ by

$$
\begin{aligned}
\widetilde{S}_{i}(z)= & \frac{1}{\left(q-q^{-1}\right) z} \sum_{j=i+1}^{N}:\left(e^{-b_{-}^{i, j}}\left(q^{N-1-j} z\right)-(b+c)^{i, j}\left(q^{N-j} z\right)\right. \\
& \left.-e^{-b_{+}^{i, j}\left(q^{N-1-j} z\right)-(b+c)^{i, j}\left(q^{N-j-2} z\right)}\right) e^{(b+c)^{i+1, j}\left(q^{N-1-j} z\right)} \\
& \times e^{\sum_{l=j+1}^{N}\left(b_{-}^{i+1, l}\left(q^{N-l} z\right)-b_{-}^{i, l}\left(q^{N-l-1} z\right)\right)+b_{-}^{i+1, N+1}(z)-b_{-}^{b^{i, N+1}\left(q^{-1} z\right)}:} \\
& +q: e^{b^{i, N+1}(z)+b_{+}^{i+1, N+1}(z)-b^{i+1, N+1}(q z)}: \quad(1 \leq i \leq N-1), \\
\widetilde{S}_{N}(z)= & -q^{-1}: e^{b^{N, N+1}(z)}: .
\end{aligned}
$$

4.2. Vertex Operator

In this section we introduce the vertex operators $\Phi(z), \Phi^{*}(z)[15]$. Let \mathcal{F} and \mathcal{F}^{\prime} be $U_{q}(\widehat{s l}(N \mid 1))$ representation for an arbitrary level $k \neq-N+1$. Let
V_{α} and $V_{\alpha}^{* S}$ be 2^{N}-dimensional typical representation with a parameters α [21]. Let $\left\{v_{j}\right\}_{j=1}^{2^{N}}$ be the basis of V_{α}. Let $\left\{v_{j}^{*}\right\}_{j=1}^{2^{N}}$ be the dual basis of $V_{\alpha}^{* S}$, satisfying $\left(v_{i} \mid v_{j}^{*}\right)=\delta_{i, j}$. Let $V_{\alpha, z}$ and $V_{\alpha, z}^{* S}$ be the evaluation module and its dual of the typical representation. For instance, the 8-dimensional representation $V_{\alpha, z}$ of $U_{q}(\widehat{s l}(3 \mid 1))$ is given by
$h_{1}=E_{3,3}-E_{4,4}+E_{5,5}-E_{6,6}$,
$h_{2}=E_{2,2}-E_{3,3}+E_{6,6}-E_{7,7}$,
$h_{3}=\alpha\left(E_{1,1}+E_{2,2}\right)+(\alpha+1)\left(E_{3,3}+E_{4,4}+E_{5,5}+E_{6,6}\right)+(\alpha+2)\left(E_{7,7}+E_{8,8}\right)$,
$e_{1}=E_{3,4}+E_{5,6}$,
$e_{2}=E_{2,3}+E_{6,7}$,
$e_{3}=\sqrt{[\alpha]_{q}} E_{1,2}-\sqrt{[\alpha+1]_{q}}\left(E_{3,5}+E_{4,6}\right)+\sqrt{[\alpha+2]_{q}} E_{7,8}$,
$f_{1}=E_{4,3}+E_{6,5}$,
$f_{2}=E_{3,2}+E_{7,6}$,
$f_{3}=\sqrt{[\alpha]_{q}} E_{2,1}-\sqrt{[\alpha+1]_{q}}\left(E_{5,3}+E_{6,4}\right)+\sqrt{[\alpha+2]_{q}} E_{8,7}$,
$h_{0}=-\alpha\left(E_{1,1}+E_{4,4}\right)-(\alpha+1)\left(E_{2,2}+E_{3,3}+E_{6,6}+E_{7,7}\right)-(\alpha+2)\left(E_{5,5}+E_{8,8}\right)$,
$e_{0}=-z\left(\sqrt{[\alpha]_{q}} E_{4,1}-\sqrt{[\alpha+1]_{q}}\left(E_{6,2}+E_{7,3}\right)+\sqrt{[\alpha+2]_{q}} E_{8,5}\right)$,
$f_{0}=z^{-1}\left(\sqrt{[\alpha]_{q}} E_{1,4}-\sqrt{[\alpha+1]_{q}}\left(E_{2,6}+E_{3,7}\right)+\sqrt{[\alpha+2]_{q}} E_{5,8}\right)$.
Consider the following intertwiners of $U_{q}(\widehat{s l}(N \mid 1))$-representation [20].

$$
\Phi(z): \mathcal{F} \longrightarrow \mathcal{F}^{\prime} \otimes V_{\alpha, z}, \quad \Phi^{*}(z): \mathcal{F} \longrightarrow \mathcal{F}^{\prime} \otimes V_{\alpha, z}^{* S}
$$

They are intertwiners in the sense that for any $x \in U_{q}(\widehat{s l}(N \mid 1))$,

$$
\Phi(z) \cdot x=\Delta(x) \cdot \Phi(z), \quad \Phi^{*}(z) \cdot x=\Delta(x) \cdot \Phi^{*}(z)
$$

We expand the intertwining operators.

$$
\Phi(z)=\sum_{j=1}^{2^{N}} \Phi_{j}(z) \otimes v_{j}, \quad \Phi^{*}(z)=\sum_{j=1}^{2^{N}} \Phi_{j}^{*}(z) \otimes v_{j}^{*}
$$

We set the \mathbf{Z}_{2}-grading of the intertwiner be $|\Phi(z)|=\left|\Phi^{*}(z)\right|=0$. For $l_{a}=\left(l_{a}^{1}, l_{a}^{2}, \cdots, l_{a}^{N}\right) \in \mathbf{C}^{N}$ and $\beta \in \mathbf{C}$, we set the bosonic operator $\phi^{l_{a}}(z \mid \beta)$ by

$$
\phi^{l_{a}}(z \mid \beta)=: e^{\sum_{i, j=1}^{N}\left(\frac{l_{a}^{i}}{k+N-1} \frac{\operatorname{Min}(i, j)}{N-1} \frac{N-1-\operatorname{Max}(i, j)}{1} a^{j}\right)(z \mid \beta)}: .
$$

In order to balance thegbackground chargeh of the vertex operators, we introduce the product of the screenings $\mathcal{Q}^{(t)}$ for $t=\left(t_{1}, t_{2}, \cdots, t_{N}\right) \in \mathbf{N}^{N}$.

$$
\mathcal{Q}^{(t)}=\mathcal{Q}_{1}^{t_{1}} \mathcal{Q}_{2}^{t_{2}} \cdots \mathcal{Q}_{N}^{t_{N}}
$$

The screening operator $\mathcal{Q}^{(t)}$ give rise to the map,

$$
\mathcal{Q}^{(t)}: \mathcal{F}\left(p_{a}\right) \rightarrow \mathcal{F}\left(p_{a}+\hat{t}\right)
$$

Here $\hat{t}=\left(\hat{t}_{1}, \hat{t}_{2}, \cdots, \hat{t}_{N}\right)$ where $\hat{t}_{i}=\sum_{j=1}^{N} A_{i, j} t_{j}$.
Theorem 4.2 [15] For $k=\alpha \neq 0,-1,-2, \cdots,-N+1$, bosonizations of the special components of the vertex operators $\Phi^{(t)}(z)$ and $\Phi^{*(t)}(z)$ are given by

$$
\begin{aligned}
\Phi_{2^{N}}^{(t)}(z) & =\mathcal{Q}^{(t)} \phi^{\hat{l}}\left(q^{k+N-1} z \left\lvert\,-\frac{k+N-1}{2}\right.\right) \\
\Phi_{1}^{*(t)}(z) & =\mathcal{Q}^{(t)} \phi^{\hat{l}^{*}}\left(q^{k} z \left\lvert\,-\frac{k+N-1}{2}\right.\right)
\end{aligned}
$$

where we have used $\hat{l}=-(0, \cdots, 0, \alpha+N-1), \hat{l}^{*}=(0, \cdots, 0, \alpha)$ and $t=\left(t_{1}, t_{2}, \cdots, t_{N}\right) \in \mathbf{N}^{N}$. The other components $\Phi_{j}^{(t)}(z)$ and $\Phi_{j}^{*(t)}(z)(1 \leq$ $j \leq 2^{N}$) are determined by the intertwining property and are represented by multiple contour integrals of Drinfeld currents and the special components $\Phi_{2^{N}}^{(t)}(z)$ and $\Phi_{1}^{*(t)}(z)$. We have checked this theorem for $N=2,3,4$.

Here we give additional explanation on the above theorem. The explicit formulae of the intertwining properties $\Phi^{(t)}(z) \cdot x=\Delta(x) \cdot \Phi^{(t)}(z)$ for $U_{q}(\widehat{s l}(3 \mid 1))$ are summarized as follows. We have set the \mathbf{Z}_{2}-grading of V_{α} as follows : $\left|v_{1}\right|=\left|v_{5}\right|=\left|v_{6}\right|=\left|v_{7}\right|=0$, and $\left|v_{2}\right|=\left|v_{3}\right|=\left|v_{4}\right|=\left|v_{8}\right|=1$.

$$
\Phi_{3}^{(t)}(z)=\left[\Phi_{4}^{(t)}(z), f_{1}\right]_{q}, \Phi_{5}^{(t)}(z)=\left[\Phi_{6}^{(t)}(z), f_{1}\right]_{q}
$$

$$
\Phi_{2}^{(t)}(z)=\left[\Phi_{3}^{(t)}(z), f_{2}\right]_{q}, \Phi_{6}^{(t)}(z)=\left[\Phi_{7}^{(t)}(z), f_{2}\right]_{q},
$$

$$
\Phi_{1}^{(t)}(z)=\frac{1}{\sqrt{[\alpha]_{q}}}\left[\Phi_{2}^{(t)}(z), f_{3}\right]_{q^{-\alpha}}, \Phi_{3}^{(t)}(z)=\frac{-1}{\sqrt{[\alpha+1]_{q}}}\left[\Phi_{5}^{(t)}(z), f_{3}\right]_{q^{-\alpha-1}}
$$

$$
\Phi_{4}^{(t)}(z)=\frac{-1}{\sqrt{[\alpha+1]_{q}}}\left[\Phi_{6}^{(t)}(z), f_{3}\right]_{q^{-\alpha-1}}, \Phi_{7}^{(t)}(z)=\frac{1}{\sqrt{[\alpha+2]_{q}}}\left[\Phi_{8}^{(t)}(z), f_{3}\right]_{q^{-\alpha-2}}
$$

The elements f_{j} are written by contour integral of the Drinfeld current $f_{j}=\oint \frac{d w}{2 \pi \sqrt{-1}} x_{j}^{-}(w)$. Hence the components $\Phi_{j}^{(t)}(1 \leq j \leq 8)$ are represented by multiple contour integrals of Drinfeld currents $x_{j}^{-}(w)(1 \leq j \leq 3)$ and the special component $\Phi_{8}^{(t)}(z)$.

4.3. Correlation Function

In this section we study the correlation function as an application of the vertex operators. We study non-vanishing property of the correlation function which is defined to be the trace of the vertex operators over the Wakimoto module of $U_{q}(\widehat{s l}(N \mid 1))$. We propose the q-Virasoro operator L_{0} for $k=\alpha \neq-N+1$ as follows.

$$
\begin{aligned}
L_{0}= & \frac{1}{2} \sum_{i, j=1}^{N} \sum_{m \in \mathbf{Z}}: a_{-m}^{i} \frac{m^{2}[\operatorname{Min}(i, j) m]_{q}[(N-1-\operatorname{Max}(i, j)) m]_{q}}{[m]_{q}[(k+N-1) m]_{q}[(N-1) m]_{q}[m]_{q}} a_{m}^{j}: \\
& +\sum_{i, j=1}^{N} \frac{\operatorname{Min}(i, j)(N-1-\operatorname{Max}(i, j))}{(k+N-1)(N-1)} a_{0}^{j} \\
& -\frac{1}{2} \sum_{1 \leq i<j \leq N} \sum_{m \in \mathbf{Z}}: b_{-m}^{i, j} \frac{m^{2}}{[m]_{q}^{2}} b_{m}^{i, j}:+\frac{1}{2} \sum_{1 \leq i<j \leq N} \sum_{m \in \mathbf{Z}}: c_{-m}^{i, j} \frac{m^{2}}{[m]_{q}^{2}} c_{m}^{i, j}: \\
& +\frac{1}{2} \sum_{1 \leq i \leq N} \sum_{m \in \mathbf{Z}}: b_{-m}^{i, N+1} \frac{m^{2}}{[m]_{q}^{2}} b_{m}^{i, N+1}:+\frac{1}{2} \sum_{1 \leq i \leq N} b_{0}^{i, N+1} .
\end{aligned}
$$

The L_{0} eigenvalue of $\left|l_{a}, 0,0\right\rangle$ is $\frac{1}{2(k+N-1)}(\bar{\lambda} \mid \bar{\lambda}+2 \bar{\rho})$, where $\bar{\rho}=\sum_{i=1}^{N} \bar{\Lambda}_{i}$ and $\bar{\lambda}=\sum_{i=1}^{N} l_{a}^{i} \bar{\Lambda}_{i}$.

Theorem $4.3[15]$ For $k=\alpha \neq 0,-1,-2, \cdots,-N+1$, the correlation function of the vertex operators,

$$
\operatorname{Tr}_{\mathcal{F}\left(l_{a}\right)}\left(q^{L_{0}} \Phi_{i_{1}}^{*\left(y_{(1)}\right)}\left(w_{1}\right) \cdots \Phi_{i_{m}}^{*\left(y_{(m)}\right)}\left(w_{m}\right) \Phi_{j_{1}}^{\left(x_{(1)}\right)}\left(z_{1}\right) \cdots \Phi_{j_{n}}^{\left(x_{(n)}\right)}\left(z_{n}\right)\right) \neq 0
$$

if and only if $x_{(s)}=\left(x_{(s), 1}, x_{(s), 2}, \cdots, x_{(s), N}\right) \in \mathbf{N}^{N}(1 \leq s \leq n)$ and $y_{(s)}=\left(y_{(s), 1}, y_{(s), 2}, \cdots, y_{(s), N}\right) \in \mathbf{N}^{N}(1 \leq s \leq m)$ satisfy the following condition.

$$
\sum_{s=1}^{n} x_{(s), i}+\sum_{s=1}^{m} y_{(s), i}=\frac{(n-m) i}{N-1} \alpha+n \cdot i \quad(1 \leq i \leq N)
$$

Acknowledgements.

This work is supported by the Grant-in-Aid for Scientific Research C (21540228) from Japan Society for Promotion of Science. The author would like to thank Professor Branko Dragovich and the organizing committee of the 7-th Mathematical Physics Meeting for an invitation.

References

[1] H.Awata, S.Odake, J.Shiraishi, Lett.Math.Phys. 42 (1997) 271.
[2] T.Kojima, J.Math.Phys. 53 (2012) 013515.
[3] I.B.Frenkel and N.Jing, Proc. Nat. Acad. Sci. U.S.A.85(1988) 9373.
[4] D.Bernard, Lett.Math.Phys. 17 (1989) 239.
[5] N.Jing, Y.Koyama and K.Misra, Selecta Math. 5 (1999) 243.
[6] N.Jing, Invent.Math.102, 663-690 (1990).
[7] N.Jing, Proc.Amer.Math.Soc.127(1999) 21.
[8] K.Kimura, J.Shiraishi and J.Uchiyama, Comm. Math. Phys. 188 (1997) 367.
[9] Y.-Z.Zhang, J.Math.Phys.40(1999) 6110.
[10] W.-L.Yang and Y.-Z.Zhang, Phys.Lett.A261 (1999) 252.
[11] J.Shiraishi, Phys.Lett.A171(1992) 243.
[12] H.Awata, S.Odake and J.Shiraishi, Commun.Math.Phys. 162 (1994) 61.
[13] Y.-Z.Zhang and M.D.Gould, J.Math.Phys. 41 (2000) 5577.
[14] T.Kojima, to appear in Springer Proceedings : Mathematics and Statistics (2013).
[15] T.Kojima, J.Math.Phys. 53 (2012) 083503.
[16] Vl.S.Dotsenko and V.A.Fateev, Nuclear Phys.B240 (1984) 312.
[17] V.G. Drinfeld, Sov.Math.Dokl. 36 (1988) 212.
[18] H.Yamane, Publ.Res.Inst.Math.Sci. 35(1999) 321.
[19] M.Wakimoto, Commun.Math.Phys.104(1986) 605.
[20] I.B.Frenkel and N.Yu.Reshetikhin, Commun.Math.Phys. 146 (1992) 8.
[21] T.D.Palev and V.N.Tolstoy, Commun.Math.Phys. 141 (1991) 549.

[^0]: * Work supported by Grant-in-Aid for Scientific Research C from Japan Society for Promotion of Science.
 ${ }^{\dagger}$ e-mail address: kojima@yz.yamagata-u.ac.jp

