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Abstract

We discus the Seiberg-Witten map and its application to noncommutative gauge
theories. In particular, we present the method of composite fields which we find
very useful when calculating higher order corrections in noncommutative gauge
theories. Two examples are given: one is the calculation of the second order cor-
rection for the noncommutative Yang-Mills action and the other is the calculation
of the corrections for the AdS inspired noncommutative gravity action. The second
example we discuss in more details.

1. Introduction

Field theories on noncommutative (NC) spaces have been investigated in
many aspects during the last twenty years. Various approaches to definition
and analysis of the properties of noncommutative spaces are present in the
literature [1]. One of the the most frequently used is the approach of
deformation quantization [2]. In this approach noncommutative functions
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f̂(x̂) are mapped to the functions of commuting coordinates f(x) and the
abstract algebra multiplication is represented by a ⋆-product, which is a
deformation of the usual point-wise multiplication. The simplest and the
most analyzed example of the ⋆-product is the Moyal-Weyl ⋆-product

f(x) ⋆ g(x) = e
i
2
θµν ∂

∂xµ
∂

∂yν f(x)g(y)|y→x , (1)

defined by a constant antisymmetric matrix θµν . Using this type of defor-
mation various problems were investigated: NC scalar field theories, NC
gauge theories, deformations of supersymmetric theories,. . . .

An important boost to the formulation of NC gauge theories came with
the paper of Seiberg and Witten [3]. They found a connection between
gauge theories on the commutative space and the corresponding NC gauge
theories. This result was then used by Wess et al. [4] to formulate the en-
veloping algebra approach to NC gauge theories. Namely, for groups which
are of importance for physical applications like SU(N), NC gauge transfor-
mations only close in the enveloping algebra which is infinitely dimensional.
This implies that the NC gauge field is also enveloping algebra-valued
which leads to infinitely many new degrees of freedom. However, using the
Seiberg-Witten (SW) map one can express all enveloping algebra-valued
NC variables (gauge parameter and fields) in terms of the corresponding
commutative variables. In that way both commutative and noncommuta-
tive theory have the same number of degrees of freedom. This approach
enabled the analysis of renormalizability of NC gauge theories [5], construc-
tion of a NC deformation of the Standard Model [6] and investigation of
its phenomenological consequences [7]. On the other hand, construction
of a NC generalization of General Relativity (GR) proved to be a diffi-
cult task. Having in mind that the SW approach works very well for NC
gauge theories, many authors consider NC gravity as a gauge theory of the
Lorentz/Poincaré group, [8]. It was shown there that if reality of the NC
gravity action is imposed, all odd order corrections (in the NC parameter)
have to vanish. The first non-vanishing correction is then the second order
correction.

In this paper we review the SW map and outline the method of composite
fields. Then we use this method to calculate the second order correction of
the NC Yang-Mills action. Finally, we discuss the NC gravity theory based
on the MacDowell Mansouri action [9] and present our results.

2. Noncommutative gauge theories

The simplest and the most studied form of noncommutativity is the canon-
ical or θ-constant noncommutativity, given by

[x̂µ, x̂ν ] = iθµν , (2)

with the constant antisymmetric matrix θµν . Following the approach of de-
formation quantization we represent noncommutative functions as functions
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of commuting coordinates and algebra multiplication with the Moyal-Weyl
⋆-product (1)

f̂(x̂) 7→ f(x)

f̂(x̂)ĝ(x̂) 7→ (f ⋆ g)(x).

The infinitesimal noncommutative gauge transformations are now defined
as [4]

δ⋆ψ = iΛ ⋆ ψ(x), (3)

where Λ is the noncommutative gauge parameter and ψ is the noncommuta-
tive matter field. Before proceeding to the standard construction one should
check if these transformations close in the algebra. If the noncommutative
gauge parameter Λ is supposed to be Lie algebra-valued Λ(x) = Λa(x)T a,
the explicit calculation gives

(δ⋆1δ
⋆
2 − δ⋆2δ

⋆
1)ψ(x) = (Λ1 ⋆ Λ2 − Λ2 ⋆ Λ1) ⋆ ψ

=
1

2

(
[Λa

1
⋆, Λb

2]{T a, T b}+ {Λa
1

⋆, Λb
2}[T a, T b]

)
⋆ ψ. (4)

The left hand side of (4) in general does not close because of the first term
in the last line. Namely, an anticommutator of two generators is in general
no longer in the Lie algebra of generators. There are two ways of solving
this problem. One is to consider only U(N) gauge theories since then the
anticommutator of generators is still in the Lie algebra of generators. This
approach enables studying of non-expanded (in orders of the deformation
parameter) noncommutative field theories. Quantizing these theories leads
to mixing of ultraviolet (UV) and infrared (IR) divergences which is know
in the literature as UV/IR mixing [10].

The second possibility is to use the enveloping algebra approach [4]. The
NC gauge parameter Λα is said to be enveloping algebra-valued and in that
case the algebra (4) closes. However, the NC gauge field also has to be
enveloping algebra-valued,

Aµ = A(0)a
µ T a +

1

2
Aab

µ {T a, T b}+ . . .

and it seems as we obtained a theory with infinitely many degrees of free-
dom, since the enveloping algebra is infinitely dimensional. The solution
to this problem and is given in terms of the Seiberg-Witten (SW)-map [3].

The basic assumption of the SW-map is that the noncommutative fields
and the noncommutative gauge parameter can be expressed as functions
of the commutative fields and the commutative gauge parameter α. For
example, the noncommutative gauge parameter Λ is given by

Λ = Λ(α,A(0)
µ ) := Λα(A

(0)
µ ) (5)
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with the commutative gauge field A
(0)
µ and δαA

(0)
µ = ∂µα + i[α,A

(0)
µ ]. The

explicit form of this dependence is found by solving the appropriate equa-
tions. In this way the number of degrees of freedom in the noncommutative
theory reduces to the number of degrees of freedom of the corresponding
commutative theory.

The requirement that the commutator of two NC gauge transformations is

a NC gauge transformation again (4) gives the solution for Λ
(1)
α ,Λ

(2)
α , . . . .

The recursive relation between the (n+1)st order and the nth order solution
is given by

Λ(n+1)
α = − 1

4(n+ 1)
θκλ

(
{Aκ

⋆, ∂λΛα}
)(n)

, (6)

where (A⋆B)(n) = A(n)B(0)+A(n−1)B(1)+ · · ·+A(0) ⋆(1)B(n−1)+A(1) ⋆(1)

B(n−2)+ . . . includes all possible terms of order n. The solution for the NC
gauge field follows from

δ⋆αAµ = ∂µΛα + i[Λα
⋆, Aµ]. (7)

The recursive solution in this case is given by

A(n+1)
µ = − 1

4(n+ 1)
θκλ

(
{Aκ

⋆, ∂λAµ + Fλµ}
)(n)

. (8)

Here Fµν is the NC field strength tensor defined by ∂µAν−∂νAµ−i[Aµ
⋆, Aν ]

and δ⋆αFµν = i[Λα
⋆, Fµν ]. Using these relations one can find the recursive

solution for Fµν :

F (n+1)
µν = − 1

4(n+ 1)
θκλ

(
{Aκ

⋆, ∂λFµν +DλFµν}
)(n)

+
1

2(n+ 1)
θκλ

(
{Fµκ, ⋆, Fνλ}

)(n)
(9)

where DλFµν = ∂λFµν − i[Aλ
⋆, Fµν ]. One can also find the SW-map so-

lutions for the matter fields transforming in the fundamental or adjoint
representation, see [11]. For example, the field Φ in the adjoint representa-
tion is

δ⋆αΦ = i[Λα
⋆, Φ], (10)

Φ(n+1) = − 1

4(n+ 1)
θκλ

(
{Aκ

⋆, ∂λΦ+DλΦ}
)(n)

, (11)

with DλΦ = ∂λΦ− i[ω̂λ
⋆, Φ].
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2.1. Method of composite fields

Let us calculate the ⋆-product of two fields in the adjoint representation,
Φ1 and Φ2. It is given by

Φ1 ⋆ Φ2 = Φ
(0)
1 Φ

(0)
2 + (Φ1 ⋆ Φ2)

(1) + (Φ1 ⋆ Φ2)
(2) + . . . . (12)

Using (10) it is straightforward to check that this product transforms in
adjoint representation of the gauge group. The first order of (12)

(Φ1 ⋆ Φ2)
(1) = Φ

(1)
1 Φ

(0)
2 +Φ

(0)
1 Φ

(1)
2 +

i

2
θαβ∂αΦ

(0)
1 ∂βΦ

(0)
2

can be rewritten in the following form

(Φ1 ⋆ Φ2)
(1) = −1

4
θαβ{A(0)

α , ∂β(Φ
(0)
1 Φ

(0)
2 ) +Dβ(Φ

(0)
1 Φ

(0)
2 )}

+
i

2
θαβ(DαΦ

(0)
1 )(DβΦ

(0)
2 ). (13)

The calculation is straightforward. Notice that the first term in (13) is a
solution of the SW map for the field ψ = Φ1 ⋆ Φ2 in the adjoint repre-
sentation, compare with (11). The second term appears because the field
ψ = Φ1 ⋆ Φ2 is not a fundamental field but a product of two fundamental
fields. Also notice that the second term is written in terms of covariant
derivatives. This will be a big advantage when we write a NC action in a
manifestly gauge covariant form.

One can generalize (13) and write an expression that is valid to all orders.
We will not do that here, for details look at [12].

3. Example I: Noncommutative Yang-Mills action

The NC Yang-Mills action is defined as

SYM = −1

4

∫
dx4Tr(Fµν ⋆ F

µν). (14)

Using the cyclicity of the integral1 one can show that the action (14) is
invariant under the NC gauge transformations. We would like to calcu-
late the second order expansion of this action. Using (9) and the method

1The integral is cyclic if∫
dx4f ⋆ g =

∫
dx4g ⋆ f =

∫
dx4fg.
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described in the previous section, for the first order of the Lagrangian we
obtain

(Fµν ⋆ F
µν)(1) = −1

4
θαβ{A(0)

α , ∂β(F
(0)
µν F

µν(0)) +Dβ(F
(0)
µν F

µν(0))}

+
i

2
θαβ(DαF

(0)
µν )(DβF

µν(0))

+
1

2
θαβ{F (0)

αµ , F
(0)
βν }F

µν(0) +
1

2
θαβFµν(0){F (0)

αµ , F
(0)
βν }.

The the first order of the action (14) is then

S
(1)
YM = −1

4
θαβ

∫
dx4Tr

(
2Fµν(0)F (0)

αµ F
(0)
βν − 1

2
F

(0)
αβ F

(0)
µν F

µν(0)
)
. (15)

We used [Dα, Dβ]F
(0)
µν = −i[F (0)

αβ , F
(0)
µν ]. Now, we conjecture the recursive

relation

S
(n+1)
YM = −1

4
θαβ

∫
dx4Tr

(
2Fµν ⋆ Fαµ ⋆ Fβν −

1

2
Fαβ ⋆ Fµν ⋆ F

µν
)(n)

(16)

and calculate the second order expansion from it. We find

S
(2)
YM = −1

8
θαβθκλ

∫
dx4Tr

{
Fµν(0)

(
{F (0)

κα , F
(0)
λµ }F (0)

βν + F (0)
αµ {F

(0)
κβ , F

(0)
λν }

−1

4
{F (0)

κα , F
(0)
λβ }F (0)

µν − 1

2
{F (0)

κλ , F
(0)
αµ F

(0)
βν }+ i(DκF

(0)
αµ )(DλF

(0)
βν )

)
+F

(0)
αβ

(1
8
{F (0)

κλ , F
(0)
µν F

µν(0)} − 1

2
{Fµν(0), F (0)

κµ F
(0)
λν } (17)

− i

4
(DκF

(0)
µν )(DλF

(µν0))
)
+ {F (0)

κµ , F
(0)
λν }F µ(0)

α F
ν(0)

β

)}
.

Note that the gauge invariance of this expression is obvious, all terms are

written as functions of F
(0)
µν and its covariant derivatives. If one tries to

calculate the second order expansion of the action (14) just by straightfor-
wardly ⋆-multiplying and inserting the first and the second order solutions,
one would end up with a very complicated expression. In addition, that
expression would not be written in a manifestly gauge invariant form, since
the gauge field and its partial derivatives appear explicitly in (9). This is
the reason we find the method of composite fields very useful.

4. Example II: AdS inspired noncommutative gravity

Let us now discuss a NC gravity theory based on the MacDowell-Mansouri
action. The commutative action is given by

S =
il2

64πGN
ϵµνρσ

∫
d4xTr(FµνFρσγ5)

= − 1

16πGN

∫
d4x

[ l2
16
ϵµνρσϵabcdR

ab
µν R

cd
ρσ + eR+ 2eΛ

]
. (18)
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This aciton is invariant under the action of the gauge group SO(1, 3). The
generators of SO(1, 3) are σab/2 = i/4[γa, γb], with γa the four dimensional
Dirac gama matrices. The fields in the theory are the spin connection ωµ
and the vielbein eµ:

ωµ = ωab
µ

σab
4
, eµ = eaµ

γa
2
,

δϵωµ = ∂µϵ+ i[ϵ, ωµ], δϵeµ = i[ϵ, eµ]. (19)

The gauge parameter ϵ is valued in the SO(1, 3) algebra, ϵ = ϵabµ
σab
4 . The

field-strength tensor is the curvature tensor and is given by

Rµν = ∂µων − ∂νωµ − i[ωm, ων ] = R ab
µν

σab
4
. (20)

The first term in the action (18) is the topological Gauss-Bonnet term,
the second term is the Einstein-Hilbert action and the last term is the
cosmological constant. The determinant of the vielbein is e = det(eaµ).

The NC generalization of (18) is given by

S =
il2

64πGN

∫
d4xϵµνρσ

[
Tr(R̂µν ⋆ R̂ρσγ5)

− i

l2
Tr(R̂µν ⋆ Êρ ⋆ Êσγ5)−

1

4l4
Tr(Êµ ⋆ Êν ⋆ Êρ ⋆ Êσγ5)

]
, (21)

with noncommutative vielbeins Êµ and noncommutative curvature R̂µν de-
fined by

R̂µν = ∂µω̂ν − ∂νω̂µ − i[ω̂µ
⋆, ω̂ν ] , (22)

where ω̂µ is the noncommutative SO(1, 3)⋆ gauge potential. Note that vari-
ables with ”hat” are NC variables and we use SW-map solutions form the
previous section to write them in terms of the commutative fields. The
symmetry of the action (21) is the NC SO(1, 3) gauge symmetry. The
SW-map guaranties that the expanded action is invariant under the com-
mutative SO(1, 3).

We will analyze only the Einstein-Hilbert action in details. The analysis of
the remaining two terms can be found in [9]. The Einstein-Hilbert action
is given by

SEH =
1

64πGN

∫
d4xϵµνρσTr(R̂µν ⋆ Êρ ⋆ Êσγ5). (23)

To find the first order correction we first calculate R̂µν ⋆ Êρ ⋆ Êσ. We

consider R̂µν ⋆ Êρ ⋆ Êσ as a ⋆-product of the curvature tensor R̂µν and the
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composite field Êρ ⋆ Êσ. Then

(R̂µν ⋆ Êρ ⋆ Êσ)
(1) = R̂(1)

µν (eρeσ) +Rµν(Êρ ⋆ Êσ)
(1)

+
i

2
θαβ∂α(Rµν)∂β(eρeσ)

= −1

4
θαβ{ωα, ∂β(Rµνeρeσ) +Dβ(Rµνeρeσ)}

+
i

2
θαβ(DαRµν)Dβ(eρeσ) (24)

+
1

2
θαβ{Rαµ, Rβν}eρeσ +

i

2
θαβRµν(Dαeρ)(Dβeσ) .

The first order correction of Einstein-Hilbert action is

S
(1)
EH =

1

64πGN
ϵµνρσ

∫
d4xTr

(
R̂µν ⋆ (Êρ ⋆ Êσ)γ5

)(1)
. (25)

Inserting (24) in (25) and integrating by parts we obtain

S
(1)
EH = − 1

256πGN
ϵµνρσθαβ

∫
d4xTrγ5

(
{Rαβ , Rµν}eρeσ

−2{Rαµ, Rβν}eρeσ − 2iRµν(Dαeρ)(Dβeσ)
)
. (26)

The second order correction of the Einstein-Hilbert action follows from the
first order correction (26) as

S
(2)
EH = − 1

512πGN
ϵµνρσθαβ

∫
d4xTrγ5

(
{R̂αβ

⋆, R̂µν} ⋆ Êρ ⋆ Êσ (27)

−2{R̂αµ
⋆, R̂βν} ⋆ Êρ ⋆ Êσ − 2iR̂µν ⋆ (DαÊρ) ⋆ (DβÊσ)

)(1)
.

Applying

(R̂αβ ⋆ R̂µν)
(1) = −1

4
θκλ{ωκ, ∂λ(RαβRµν) +Dλ(RαβRµν)}

+
i

2
θκλ(DκRαβ)(DλRµν) +

1

2
θκλ({Rκα, Rλβ}Rµν

+Rαβ{Rκµ,Rλν
})

and
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(DαÊρ)
(1) = −1

4
θκλ{ωκ, ∂λ(Dαeρ) +Dλ(Dαeρ)}

+
1

2
θκλ{Rκα, Dλeρ},

(DαÊρ ⋆ DβÊσ)
(1) = −1

4
θκλ{ωκ, ∂λ(DαeρDβeσ) +Dλ(DαeρDβeσ)}

+
i

2
θκλ(DκDαeρ)(DλDβeσ)

+
1

2
θκλ

(
{Rκα, Dλeρ}(Dβeσ) + (Dαeρ){Rκβ, Dλeσ}

)
we obtain

S
(2)
EH = − 1

512πGN
ϵµνρσθαβθκλ

∫
d4xTrγ5

(
(−1

4
{Rκλ, {Rαβ , Rµν}}

+{Rκλ, {Rαµ, Rβν}}+
1

2
{Rµν , {Rκα, Rλβ}} − 2{Rαµ, {Rκβ, Rλν}}

+
i

2
[DκRαβ, DλRµν ]− i[DκRαµ, DλRβν ])eρeσ

+i({Rαβ , Rµν} − 2{Rαµ, Rβν})(Dκeρ)(Dλeσ)

−iRµν{Dαeρ, {Rκβ, Dλeσ}}+Rµν(DκDαeρ)(DλDβeσ)
)
. (28)

The second order correction to the Einstein-Hilbert action is of the 3rd, 2nd
and 1st order in the curvature. Its implications to the equations of motion
have to be investigated carefully. Since the higher powers of curvature
enter, it is obvious that unlike in the General Relativity the spin connection
propagates and it cannot be expressed in terms of vielbeins.

5. Discussion and outlook

We presented a way to calculate the higher order corrections for the NC
gauge theories expanded in terms of the SW-map. Two examples are given:
the second order correction of the NC Yang-Mills action and the second
order correction of the NC gravity action. Both corrections are written in
a manifestly gauge covariant way. The consequences: equations of motion,
corrections to the commutative solutions, phenomenology,. . . remain to be
studied in the future work.

References

[1] A. Connes, Non-commutative Geometry, Academic Press (1994); J. Madore, An
Introduction to Noncommutative Differential Geometry and its Physical Applica-
tions, 2nd Edition, Cambridge Univ. Press, 1999; P. Aschieri, M. Dimitrijević,
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