
Nontrivial Kalb-Ramond field of the effective

non-geometric background ∗

Ljubica Davidović†
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Abstract

We solve the boundary conditions for the open bosonic string moving in the weakly
curved background. This background is composed of the constant metric and linear
in coordinate Kalb-Ramond field, with the infinitesimal coordinate dependence.
The effective theory obtained on the above solution is defined on the non-geometric
doubled space (qµ, q̃µ), where qµ is the effective coordinate and q̃µ is its T-dual.
The effective metric depends on the coordinate qµ and there exists the effective
Kalb-Ramond field which depends on the T-dual coordinate q̃µ.

1. Introduction

In a large number of papers, considering the open bosonic string theory,
is assumed that the string moves in the flat background. In this case,
the equations of motion and the boundary conditions, obtained from the
minimal action principle, can be solved by expressing the odd coordinate
part in terms of the even coordinate part. We investigated a generalization
of such a solution, when the string moves in the weakly curved background.

The weakly curved background is composed of the constant metric and
the linearly coordinate dependent Kalb-Ramond field, with infinitesimally
small field strength. We sought for the solution of the boundary conditions
in three ways. In our paper [1], we applied the Dirac consistency procedure
to the boundary conditions and obtained the infinite set of constraints.
We gathered them into two sigma dependent constraints, and obtained
theirs explicit form and solved them iteratively. As we used the canonical
approach, the boundary conditions where presented in the canonical form,
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and their solution gave the odd coordinate and momenta parts in terms of
the even ones.

In our paper [2], we repeated the Dirac procedure, but this time completely
in the Lagrangian formalism. The solution gives the sigma and time deriva-
tive of the odd coordinate part in therms of the even coordinate part.

Finally, in [3] we presupposed the form of the solution, taking that the
solution has to determine the odd coordinate part in terms of the even co-
ordinate part. By the careful consideration of the σ-parity of the equations
of motion, boundary and consistency conditions, and at the end by solving
the simple equations for the unknown coefficients, we obtained the form of
the solution.

The solutions obtained in these three ways are equivalent. The effective
theory obtained on the solution, significantly differs from the flat back-
ground case. In the weakly curved background (bµν ̸= 0 and Bµνρ ̸= 0),
the effective Lagrangian is defined on the doubled target space (qµ, q̃µ).
These effective coordinates appear naturally in the solution of the Neu-
mann boundary conditions. The effective coordinates are dual to each
other. The effective metric depends on the even effective coordinate qµ,
while the effective Kalb-Ramond field depends on the odd q̃ν . Because
of this fact the term in the action containing the effective Kalb-Ramond
field becomes Ω-even, which allows its survival. In the conventional space,
with only one effective coordinate qµ, the effective Kalb-Ramond field is
eliminated, because it comes within the Ω-odd term in the action.

2. Open string theory in weakly curved background

The action describing the bosonic string moving in the background fields:
metric Gµν and Kalb-Ramond antisymmetric field Bµν is given by

S = κ

∫
Σ
d2ξ

[1
2
ηαβGµν(x) + ϵαβBµν(x)

]
∂αx

µ∂βx
ν , (1)

(ε01 = −1), where integration goes over two-dimensional world-sheet Σ pa-
rameterized by ξ0 = τ , ξ1 = σ with σ ∈ [0, π]. Here xµ(ξ), µ = 0, 1, ..., D−1
are the coordinates of the D-dimensional space-time, and we use the nota-
tion ẋ = ∂x

∂τ , x
′ = ∂x

∂σ .

The background fields must satisfy the space-time equations of motion for
the conformal invariance on the quantum level to be preserved. To the
lowest order in slope parameter α′, for the constant dilaton field Φ = const
these equations have the form

Rµν −
1

4
BµρσB

ρσ
ν = 0 , DρB

ρ
µν = 0, (2)

where Bµνρ = ∂µBνρ + ∂νBρµ + ∂ρBµν is a field strength of the field Bµν ,
and Rµν and Dµ are Ricci tensor and covariant derivative with respect to
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space-time metric. We will consider the following particular solution of
these equations, the weakly curved background

Gµν = const, Bµν(x) = bµν +
1

3
Bµνρx

ρ = bµν + hµν(x), (3)

where the parameter bµν is constant and Bµνρ is constant and infinitesimally
small. Through the paper we will work up to the first order in Bµνρ.

The minimal action principle for the open string leads to the equation of
motion

ẍµ = x′′µ − 2Bµ
νρẋ

νx′ρ, (4)

and the boundary conditions on the string endpoints. Choosing the Neu-
mann boundary conditions we have

γ0µ

∣∣∣
σ=0,π

= 0, γ0µ ≡ δL
δx′µ

= Gµνx
′ν − 2Bµν ẋ

ν . (5)

We will solve these boundary conditions presupposing the form of the so-
lution. We will discuss the effective theory obtained on the solution.

2.1. Solution of the boundary conditions

So, let us presuppose the form of the solution and analyse what such a form
has to satisfy in order to actually be the solution. Defining the even and
odd coordinate parts with respect to σ = 0

qµ(σ) =
1

2

[
xµ(σ) + xµ(−σ)

]
, q̄µ(σ) =

1

2

[
xµ(σ)− xµ(−σ)

]
, (6)

we can separate the even and odd parts of the equation of motion (4) and
the boundary condition (5) at σ = 0. The equations of motion become

q̈µ− q′′µ = −2Bµ
νρ

[
q̇ν q̄′ρ+ ˙̄q

ν
q′ρ

]
, ¨̄q

µ− q̄′′µ = −2Bµ
νρ

[
q̇νq′ρ+ ˙̄q

ν
q̄′ρ

]
, (7)

and only the even part of γ0µ contributes to the boundary conditions at
σ = 0

γ0µ ≡ Gµν q̄
′ν − 2bµν q̇

ν − 2hµν(q)q̇
ν . (8)

Let us suppose that the solution of the boundary conditions can be pre-
sented in the form where the first in τ and σ derivatives of the odd coor-
dinate part will be expressed in terms of the first in τ and σ derivatives of
the even coordinate part

˙̄qµ = −Aµ
1ν(q̃)q̇

ν + 2βµ
1ν(q)q

′ν , q̄′µ = −Aµ
2ν(q̃)q

′ν + 2βµ
2ν(q)q̇

ν . (9)

We assume that the coefficient functions are linear. The characteristics
of the coefficients A and β arguments, are dictated by the parity of both
equations. The coefficients Aµ

1ν and Aµ
2ν are odd and as such they do not
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contain constant terms and they depend on some odd variable q̃, while βµ
1ν

and βµ
2ν are even functions, depending on the (new independent) variable

qµ. Beside satisfying (8), the solution (9) must obey the equations of motion
(7), the consistency condition ( ˙̄qµ)′ = (q̄′µ)· and it must be in agreement
with the zeroth order solution

˙̄qµ = 2bµνq
′ν , q̄′µ = 2bµν q̇

ν , (10)

for Bµνρ = 0.

Using the fact that the equations of motion (7) , the zeroth order solution
(10) and the boundary conditions (8) are all invariant to the interchange
of τ and σ derivatives, and that Aµ

ν is infinitesimal, we can conclude that
the ansatz must be invariant too and that βµ

ν(q) = (G−1)µρBρν(q). Now,
substituting the redefined ansatz into the equations of motion (7), we obtain

q̈µ − q′′µ = 12[hµν(q̇)b
ν
ρq̇

ρ − hµν(q
′)bνρq

′ρ], (11)

and

Ȧµ
ν(q̃)q̇

ν −A′µ
ν(q̃)q

′ν +Aµ
ν(q̃)(q̈

ν − q′′ν) = 2h′µν q̇
ν − 24h′µν(bq)(bq̇)

ν , (12)

while the consistency relation ( ˙̄qµ)′ = (q̄′µ)· gives

2Bµ
ν(q)(q̈

ν − q′′ν) = Ȧµ
ν(q̃)q

′ν −A′µ
ν(q̃)q̇

ν . (13)

If

˙̃q
µ
= q′µ, q̃′µ = q̇µ. (14)

these equations have the solution

Aµ
ν(q) = (G−1)µρ

[
h(q)− 12bh(q)b− 12h(bq)b+ 12bh(bq)

]
ρν
, (15)

with the property (GA)µν = −(GA)νµ. Finally, we can write the space-time
coordinates satisfying the boundary condition at σ = 0 as

ẋµ = [δµν −Aµ
ν(q̃)]q̇

ν + 2[G−1B(q)]µνq
′ν ,

x′µ = [δµν −Aµ
ν(q̃)]q

′ν + 2[G−1B(q)]µν q̇
ν . (16)

The same expressions have been obtained in ref. [1], using canonical meth-
ods.

instead of (6), we define even and odd variables with respect to σ = π

⋆qµ(σ) =
1

2

[
xµ(π+σ)+xµ(π−σ)

]
, ⋆q̄µ(σ) = −1

2

[
xµ(π+σ)−xµ(π−σ)

]
.

(17)
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Applying the analogous procedure as for the case σ = 0, we obtain

ẋµ(σ)=
[
δµν −Aµ

ν [
⋆q̃(π − σ)]

]
⋆q̇ν(π − σ)+2

[
G−1B[⋆q(π − σ)]

]µ
ν

⋆q′ν(π − σ),

x′µ(σ)=
[
δµν −Aµ

ν [
⋆q̃(π − σ)]

]
⋆q′ν(π − σ) +2

[
G−1B[⋆q(π − σ)]

]µ
ν

⋆q̇ν(π − σ).

(18)

Note that if

qµ(σ) = ⋆qµ(π − σ), q̄µ(σ) = ⋆q̄µ(π − σ), (19)

then the solutions (16) and (18) coincide, and from the relation (19) fol-
lows the 2π-periodicity of xµ. So, if we extend the σ domain and demand
2π−periodicity of the original variable xµ(σ + 2π) = xµ(σ), the relation
(16) solves both constraints at σ = 0 and σ = π.

Let us stress that the solution of the boundary condition does not depend
on one effective variable only, but on the two variables qµ and q̃µ, connected
by the relation (14). So, we obtained some non-geometric space with the
doubled number of degrees of freedom but with the constraint (14).

2.2. Effective theory

Substituting the solution (16) into the Lagrangian (1) we obtain the ef-
fective Lagrangian. Because our basic variable qµ(σ) contains only even
powers of σ, it is convenient to regard it as the even function qµ(−σ) =
qµ(σ) on the interval σ ∈ [−π, π]. Hereafter, we will consider the action
Seff =

∫
dτ

∫ π
−π dσL

eff , and consequently, the terms of the effective met-
ric which depend on q̃ and the term of effective Kalb-Ramond field which
depends on q will disappear, so that

Seff = κ

∫
Σ1

d2ξ
[1
2
ηαβGeff

µν (q) + ϵαβBeff
µν (2bq̃)

]
∂αq

µ∂βq
ν . (20)

Here Σ1 marks the changed sigma domain σ ∈ [−π, π]. The effective back-
ground fields are equal to

Geff
µν (q) = GE

µν(q), Beff
µν (2bq̃) = −κ

2
[g∆θ(2bq̃)g]µν , (21)

where
GE

µν(x) ≡ Gµν − 4Bµρ(x)(G
−1)ρσBσν(x), (22)

is the open string metric, and ∆θ is the infinitesimal part of the so called
non-commutativity parameter

θµν = −2

κ

[
G−1

E BG−1
]µν

= θµν0 − 2

κ

[
g−1(h+ 4bhb)g−1

]µν
. (23)



116 Ljubica Davidović, Branislav Sazdović

It is defined in analogy with that of the flat space-time introduced in [4].
The constant parts of the effective metric and the non-commutativity pa-

rameter are denoted by gµν = GE
µν(0) and θµν0 = θµν(0) = − 2

κ

[
g−1bG−1

]µν
.

So, the complete transition from the original theory (1) to the effective
theory (20) consists of the transition from conventional to the doubled ge-
ometry

xµ → qµ, q̃µ (24)

and the background field transition

Gµν → Geff
µν (q), Bµν(x) → Beff

µν (2bq̃) . (25)

The first transition says that while the original theory is defined on the
geometric target space, the effective one is defined on the enlarged, the so
called doubled target space, given in terms of both the effective coordinate
qµ and its T-dual q̃µ (explained in the next section). Such a space is
non-geometrical space [8]. In our case of the weakly curved background,
the non-geometrical space arose naturally in the solution of the Neumann
boundary conditions.

The appearance of the doubled target space allowed the string to see the

effective background field Beff
µν . In fact, the effective theory is Ω-even

projection of the initial one, therefore in the geometric background the
term with Kalb-Ramond field vanished as the Ω-odd term in the action.
But, in doubled target space Kalb-Ramond field depends on the T-dual
coordinate q̃µ, which is Ω-odd. So, the corresponding term in the action
becomes Ω-even and can not be projected out by the world-sheet parity
projection.

3. Doubled geometry of the effective theory

The effective theory for the constant background is the theory of the un-
oriented closed string. It is well known that it does not contain the Kalb-
Ramond field. The explanation of Ref.[5], is that Kalb-Ramond field ap-
pears within the term Bµν q̇

µq′ν , which is odd under σ-parity and conse-
quently does not contribute to the action.

For the weakly curved background, there are two somewhat unexpected
things in the effective theory (20). Not only that the non-trivial Kalb-

Ramond field Beff
µν appears, but it is coordinate dependent. Moreover, it

does not depend on the coordinate qµ but on q̃µ. Let us analyze and explain
these results.

In the case of the weakly curved background the effective Kalb-Ramond

field Beff
µν (2bq̃) is proportional to q̃µ, and consequently it is odd under σ-

parity transformation

ΩBeff
µν [2bq̃(σ)] = −Beff

µν [2bq̃(σ)].
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This makes the term Beff
µν (2bq̃)q̇µq′ν Ω-even and allows its survival.

The relations in (14) help us to find the interpretation of q̃µ. Note that
it is enough to consider q̃µ in the zeroth order, because it appears as an

argument of Beff
µν only, which is the infinitesimal of the first order. The

solution of the zeroth order equation of motion ∂+∂−q
µ = 0 for Ω-even

variable qµ has a form

qµ(σ) = fµ(σ+) + fµ(σ−). (σ± = τ ± σ) (26)

With the help of relation q̇µ(σ) = f ′µ(σ+)− f ′µ(σ−), both equations from
(14) produce

q̃µ(τ, σ) = fµ(σ+)− fµ(σ−) + f0. (27)

The integration constant f0 in (27) is zero because the odd variable q̃µ can
not contain the constant part. This means that q̃µ(τ, σ) is T-dual mapping
of the effective coordinate qµ(τ, σ) (see for example (17.76) of Ref. [5] or
eq. (6.17) of Ref.[6]).

Let us comment the duality between q and q̃ in general case. For the weakly
curved background Ref. [7], the dual coordinate yµ can be expressed in
terms of the original one xµ as

∂±yµ ∼= −2Π∓µν [x]∂±x
ν ∓ 2β∓

µ [x], (28)

where Π±µν ≡ Bµν ± 1
2Gµν and βα

µ [x] ≡ ∂µBνρϵ
αβxν∂βx

ρ is infinitesimal.
In the present article, the role of the initial coordinate xµ takes qµ, and the
role of the dual coordinate yµ takes q̃ν . Projecting (28) into odd and even
part and neglecting first order in Bµνρ terms, one obtains

˙̃qµ ∼= q′µ, q̃′µ ∼= q̇µ. (29)

These are just the expressions (14). So, qµ and q̃ν are not just duals in the
zeroth order but truly the dual coordinates.

So, in the effective theory, the effective metric depends on the effective co-
ordinate qµ and the effective Kalb-Ramond field on its T-dual q̃µ. This
kind of background is seen to be possible in the so called doubled formula-
tion (the analysis of the non-geometrical backgrounds where the T-duality
is allowed as the transition function [8]).
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