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Abstract

The 4d Kerr geometry displays many wonderful relations with quantum world and,
in particular, with superstring theory. The lightlike structure of fields near the
Kerr singular ring is similar to the structure of Sen solution for a closed heterotic
string. Another string, open and complex, appears in the initiated by Newman
complex representation of the Kerr geometry. Combination of these strings forms
a membrane source of the Kerr geometry which is parallel to the string/M-theory
unification. In this paper we give one more evidence of this relationship, emergence
of the Calabi-Yau twofold (K3 surface) in twistorial structure of the Kerr geometry
as a consequence of the Kerr theorem. Finally, we indicate that the Kerr stringy
system may correspond to a complex embedding of the critical N=2 superstring.

PACS: 11.25.-w, 11.27.+d, 04.20.Jb

1. Introduction

It is commonly recognized now that black holes (BH) are akin to elemen-
tary particles. On the other hand, the gravity and BH’s represent now
important constituents of superstring theory. However, in spite of these
close relationships, the consistent unification of the gravity, strings and el-
ementary particles is not reached. To understand what prevents from such
unification, one should analyze all the consistent points and contradictions.
The Kerr solution plays in this respect especial role, since it represents a
metric of the rotating BH or a classical ”spinning mass” [1] which displays
a consistency with gravitational field of elementary particles. Angular mo-
mentum of the Kerr solution is J = m|a|, where parameter a = J/m is
radius of the Kerr singular ring. The charged Kerr-Newman (KN) solution
has gyromagnetic ratio g = 2, as that of the Dirac electron [2, 3], and
therefore, the KN gravitational field corresponds to the background metric
of the electron with great precision, indicating that the conflict between
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gravity and the spinning elementary particles is not impassable. The spin
of electron is extreme high, and the ratio a/m (in the dimensionless units
c = G = ~ = 1) is about 1022. For |a| < m, the Kerr singular ring is
covered by the BH horizon, however, for parameters of the elementary par-
ticles |a| >> m, the black hole horizons disappear, and the Kerr singular
ring turns out to be naked, taking the Compton radius a = ~/2m, contrary
to the pointlike structureless electron. Also, instead of the expected week
gravitational field and the consistent with quantum theory flat background
in vicinity of the electron core, the KN gravitational field exhibits a singu-
lar ring of the Compton size. Fortunately, this trouble may be regulated
by a special procedure – introduction of some source covering the Kerr
singular ring. Structure of such a source was specified by many physicists
step by step during more than four decades, in particular in the papers
[4, 5, 6, 7, 8, 9, 10, 11]. As a result, the consistent regular source of the KN
solution, creating the necessary very weak gravitational field, acquired the
form of a highly oblate bubble (rotating membrane) bounded by a closed
relativistic string. Along with this closed string,[11, 12], an open complex
string was obtained in the complex structure of the Kerr-Schild (KS) geome-
try [13]. These two strings form together a regular membrane source, which
is parallel with the regular enhancon model [14] used in the superstring/M-
theory unification [15]. Finally, it has been obtained recently, [16], that
the twistorial structure of the four dimensional KS geometry, being com-
bined with the orientifold structure of the complex Kerr string, creates the
Calabi-Yau twofold (K3 surface) on the projective twistor space determined
by the Kerr theorem. It confirms close relationships of the KS geometry
with the basic structures of the superstring theory and indicates presence
of some underlying theory which unifies the Kerr gravity with physics of
elementary particles and superstring theory. Origin of this unification may
lie in the complex N=2 critical superstring [17] which, like the KS geometry,
has inherent twistorial structure [18, 19] and may consistently be embedded
in the complex four-dimensional KS geometry.

2. Real structure of the KN geometry

KN metric is represented in the Kerr-Schild (KS) form [3],

gµν = ηµν + 2he3µe
3
ν , (1)

where ηµν is auxiliary Minkowski background in Cartesian coordinates

x = xµ = (t, x, y, z),

h = P 2 mr − e2/2

r2 + a2 cos2 θ
, P = (1 + Y Ȳ )/

√
2, (2)

and e3(x) is a tangent direction to a Principal Null Congruence (PNC),
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which is determined by the form1

e3µdx
µ = du+ Ȳ dζ + Y dζ̄ − Y Ȳ dv, (3)

via function Y (x), which is controlled by the Kerr theorem, [3, 20, 21, 22].

The twisting lightlike rays of the Kerr PNC are focussing in the equatorial
plane cos θ = 0, at the Kerr singular ring, r = 0, approaching it tangentially.
As a result, the aligned with Kerr PNC metric and the KN electromagnetic
potential,

Aµ = −P−2Re
e

(r + ia cos θ)
e3µ, (4)

concentrate near the Kerr ring and form a closed lightlike gravitational
waveguide ,[12] playing the role of a closed string which may carry excita-
tions in the form of the lightlike traveling waves [23, 24].
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Figure 1: Twistor null lines of the Kerr congruence are focused on the Kerr
singular ring, forming a twosheeted spacetime branched by closed string.

Treatment of the Kerr ring as a closed string was supported by the studies
of the fundamental string solutions to low-energy string theory, [25]. There
was obtained deep parallelism between the singular solutions of general rel-
ativity and the field solutions to low-energy string theory, [26]. In 1992 Sen
obtained two important solutions to low-energy string theory: a) solution
for fundamental heterotic string [27], and b) analog of the Kerr solution
to low-energy string theory [28]. Then, it has been shown in [29] that the
structure of electromagnetic field and metric around the Kerr singular ring
in the solution a) is the same as that in the fundamental heterotic string
solution b), for exclusion of the twovalued character of the fields which is
caused by the twosheeted structure of the over-rotating Kerr space-time.

1Here ζ = (x + iy)/
√
2, ζ̄ = (x − iy)/

√
2, u = (z + t)/

√
2, v = (z − t)/

√
2, are

the null Cartesian coordinates, r, θ, ϕ are the Kerr oblate spheroidal coordinates, and
Y (x) = eiϕ tan θ

2
is a projective angular coordinate. The used signature is (−+++).
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Twosheetedness of the Kerr geometry created a parallel line of investiga-
tion (Keres-Isreal-Hamity), which was evaluated in the López model of the
bubble-source [7], where the singular region r < re = e2/2m, was excised
and the source accepted the form of a rigidly rotating ellipsoidal membrane,
or bubble with a flat interior.

Regular source of the KN solution. Finally, in [11] the bubble source of
the KN solution was generalized to a solitonic field model of a domain wall
which interpolates smoothly between the external KN background and a
false vacuum state inside the bubble. Gravitational singularity of the KN
solution turns out to be suppressed by a supersymmetric vacuum state
forming by the Higgs field inside the bubble, while the regularized em field
formed a closed string on the boundary of the bubble.

Along with this closed string, the KN geometry contains also a complex
open string, [13], which appears in the initiated by Newman complex rep-
resentation of Kerr geometry, [30]. This string gives an extra dimension θ to
the stringy source (θ ∈ [0, π]), resulting in its extension to López membrane
source [7, 11]. A superstring counterpart of this extension is the transfer
from superstring theory to 11-dimensional M -theory and M2-brane, [15].

The Kerr theorem determines the shear free null congruences with tan-
gent direction (3) by means of the solution Y (x) of the equation F (TA) = 0,
where F (TA) is an arbitrary holomorphic function in the projective twistor
variables TA = {Y, λ1 = ζ − Y v, λ2 = u+ Y ζ̄}.
Using the Cartesian coordinates xµ, one can rearrange variables and re-
duce generating function F (TA) to the form F (Y, xµ), which allows one to
represent solution of the equation F (TA) = 0 in the form Y (xµ).

Function F (Y, xµ) for the Kerr and KN solutions is to be quadratic in Y,

F = A(xµ)Y 2 +B(xµ)Y + C(xµ), (5)

and the equation F = 0 represents a quadric in the projective twistor space
CP3. If determinant ∆ = (B2 − 4AC)1/2 is not degenerated, it defines the
complex radial distance [20, 22]

r̃ = −∆ = −(B2 − 4AC)1/2. (6)

The quadratic case is explicitly resolved and yields two solutions

Y ±(xµ) = (−B ∓ r̃)/2A, (7)

which allows one to restore two PNC by means of (3). One can easily obtain
from (5) and (7) that the used in the metric (2) and the em potential (4)
complex radial distance r̃ = r + ia cos θ may also be determined from the
Kerr generating function by the relation

r̃ = −dF/dY . (8)
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Therefore, the Kerr singular ring, r̃ = 0, is formed as a caustic of the Kerr
congruence, dF/dY = 0.

As a consequence of the Vieta’s formulas, the quadratic in Y function (5)
may be expressed via the solutions Y ±(xµ) in the form

F (Y, xµ) = A(Y − Y +(xµ))(Y − Y −(xµ)). (9)

3. Complex Kerr geometry and an open complex string

One can see that the complex radial distance r̃ = r + ia cos θ takes in the
Cartesian coordinates the form

r̃ =
√

x2 + y2 + (z + ia)2, (10)

and therefore, the scalar component of the vector potential (4) may be

obtained from the Coulomb solution ϕ(x⃗) = e/r = e/
√
x2 + y2 + z2 by a

complex shift z → z+ia, or by the shift of its singular point x⃗0 = (0, 0, 0) in
complex region x⃗0 → (0, 0,−ia). The complex shift was first considered by
Appel in 1887 [31], who noticed that the Coulomb solution, being invariant
solution to the linear Laplace equation with respect to a real shifts of its
origin x⃗ → x⃗ + a⃗, should also be invariant with respect to the complex
shift. In spite of triviality of this procedure from complex point of view,
it yields very nontrivial consequences in the real section, in particular, the
singular point of the Coulomb solution x⃗0 = (0, 0, 0) turns into singular
ring x2+y2+(z+ ia)2 = 0 (intersection of the sphere x2+y2+z2 = a2 and
plane z = 0), which becomes the branch line of the space into two sheets.

The obtained by Newman linearized form of the complex retarded-time
construction, acquires exact meaning in the Kerr-Schild class of metrics,
[23, 22, 20]. The KN solution in the KS form is generated by a complex
source propagating along a straight Complex World Line (CWL)

xµL(τL) = xµ0 (0) + uµτL +
ia

2
{kµL − kµR}, (11)

where uµ = (1, 0, 0, 1), kR = (1, 0, 0,−1), kL = (1, 0, 0, 1) and τL = tL+σL
is a complex retarded-time parameter. Index L labels it as a Left structure,
and we should also add a complex conjugate Right structure

xµR(τR) = xµ0 (0) + uµτR − ia

2
{kµL − kµR}. (12)

Therefore, from complex point of view the Kerr and Schwarzschild geome-
tries are equivalent and differ only by a trivial complex shift. The non-
trivial twisting structure of the Kerr geometry appears on the real slice,
which for the Kerr solution goes aside of the center of solution. Complex
shift turns the Schwarzschild radial directions n⃗ = r⃗/|r| into twisted direc-
tions of the Kerr congruence, Fig.1.
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Complex open string It was obtained [13, 18] that the complex world
line xµ0 (τ), parameterized by complex time τ = t + iσ, represents really
a two-dimensional surface which takes an intermediate position between
particle and string. The corresponding ”hyperbolic string” equation [18],
∂τ∂τ̄x0(t, σ) = 0, yields the general solution

x0(t, σ) = xL(τ) + xR(τ̄) (13)

as sum of the analytic and anti-analytic modes xL(τ), xR(τ̄), which are
not necessarily complex conjugate. For each real point xµ, the parameters
τ and τ̄ should be determined by a complex retarded-time construction.
Complex source of the KN solution corresponds to two straight complex
conjugate world-lines,(11),(12). Contrary to the real case, the complex
retarded-advanced times τ∓ = t ∓ r̃ may be determined by two different
(Left or Right) complex null planes, which are generators of the complex
light cone. It yields four different roots for the Left and Right complex
structures [22, 20]

τ∓L = t∓ (rL + ia cos θL) (14)

τ∓R = t∓ (rR + ia cos θR). (15)

The real slice condition determines relation σ = a cos θ with null directions
of the Kerr congruence θ ∈ [0, π], which puts restriction σ ∈ [−a, a] indi-
cating that the complex string is open, and its endpoints σ = ±a may be
associated with the Chan-Paton charges of a quark-antiquark pair. In the
real slice, the complex endpoints of the string are mapped to the north and
south twistor null lines, θ = 0, π, see Fig.3.

Figure 2: The complex conjugate Left and Right null planes generate the
Left and Right retarded and advanced roots.

Orientifold projection. The complex open string boundary conditions
[13] require the worldsheet orientifold structure [15, 17] which turns the
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open string in a closed but folded one. The world-sheet parity transfor-
mation Ω : σ → −σ reverses orientation of the world sheet, and covers
it second time in mirror direction. Simultaneously, the Left and Right
modes are exchanged. The projection Ω is combined with space reflection
R : r → −r, resulting in RΩ : r̃ → −r̃, which relates the retarded and
advanced folds RΩ : τ+ → τ−, preserving analyticity of the world-sheet.
The string modes xL(τ), xR(τ̄), are extended on the second half-cycle by
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Figure 3: Ends of the open complex string, associated with quantum num-
bers of quark-antiquark pair, are mapped onto the real half-infinite z+, z−

axial strings. Dotted lines indicate orientifold projection.

the well known extrapolation, [15, 17]

xL(τ
+) = xR(τ

−); xR(τ
+) = xL(τ

−), (16)

which forms the folded string, in with the retarded and advanced modes
are exchanged every half-cycle.

The projection T = RΩ sets parity between the positive Kerr sheet deter-
mined by the Right retarded time and the negative sheet of the the Left
advanced time. It allows one to escape the anti-analytical Right complex
structure, replacing it by the Left advanced one, and the problem is reduced
to self-interaction of the retarded and advanced sources determined by the
time parameters τ±. The presented in Fig.2 diagram shows a crossing sym-
metry the four roots τ± and τ̄±, for the complex retarded time, which
allows one to replace the Right complex conjugate retarded-time structure
xR(τ

−) by the antipodal Left advanced-time structure xL(τ
+), and works

only in terms of the Left complex structures, omitting the index ‘L’.

4. Calabi-Yau twofold from the Kerr theorem

The Kerr and KN solutions are stationary solutions of the Einstein-Maxwell
field equations. In the KS formalism [3] they are characterized by a constant
Killing direction Kµ, which corresponds to invariance of the metric with
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respect to the action of the operator K̂ = Kµ∂µ, and the condition of

stationarity K̂gµν = 0 requires stationarity of the congruence K̂e3 = 0,
which implies KY = K̂Ȳ = 0. Killing direction Kµ may be expressed
via parameters of the CWL, xµ0 (τ), as follows, Kµ = ∂τx

µ
0 (τ), and the

coefficients A,B,C turn out to be functions of the coordinates xµL(τ
−) and

4-velocity of the CWL , uµ(τ−) = ẋµL(τ
−) ≡ ∂τx

µ
L(τ)|τ− , as functions of the

parameter τ−. However, it has been shown in [20] that explicit dependence
from τ− drops out for the stationary KS solutions. Excitations of the strings
breaks stationarity of the KS solutions, and there appears radiation [32, 33]
which should create a recoil. As a result, there appears explicit dependence
of the KS solutions on the complex time parameter τ, and the generating
functions F (τ−) and F (τ+) turn out to be independent. Consequently,
parameters of the Kerr in-going congruence Ain, Bin, Cin, determined by
τ− becomes independent from parameters Aout, Bout, Cout, determined by
τ+, and should be considered as independent congruences generated by
independent sources. Each of these sources produces a twosheeted KS
geometry, and the formal description of the resulting four-folded congruence
should be based on a multi-particle version of the Kerr theorem which
corresponds to multi-sheeted twistorial structure of the KS geometry, [34].
In particular, the retarded and advanced pieces of the world line, xµL(τ

−)
and xµL(τ

+), will generate two independent functions, F+ and F−, and
create two different twistorial manifolds determined by two-particle version
of the Kerr theorem. The corresponding two-particle function

F (2)(TA, x+L , x
−
L ) = F+(TA, x+L )F

−(TA, x−L ) (17)

represents the associated with the world-sheet parity, τ−L ↔ τ+L . two-point
function formed as product of the functions F+ and F− corresponding to
the retarded, xL(τ

−), and advanced, xL(τ
+), complex sources. The both

factors, F+ and F− are quadratic in TA, and each of the partial equa-
tions F+ = 0 (or F− = 0) generates a quadric in the projective twistor
space CP 3 corresponding to the usual two-sheeted structure of the sta-
tionary KS geometry. The ‘product’ manifold, determined by the equation
F (2)(TA, x+L , x

−
L ) = 0, corresponds to a four-fold described as a quartic in

the projective twistor space CP 3, which is the Calabi-Yau (complex) two-
fold, or the well-known K3 surface used in diverse models of the string
compactification and also by generalization of superstring theory to M-
theory,[15, 17]. We obtain that dynamical generalization of the Kerr ge-
ometry requires splitting of the complex source of Kerr geometry into in-
dependent retarded and advanced components described by the orientifold
parity of the world-sheet. Orientifold appears as an stringy analog of the
discussed by De Witt and Breme, [35] ‘bi-tensor’ fields, which are classical
predecessors of the Feynman propagator.
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5. Discussion

Connections between black holes and elementary particles are now com-
monly accepted. The Kerr solution plays in this respect especial role, since
it represents a rotating black hole solution, metric of which may be con-
sistency matched with gravitational field of spinning elementary particles.
The charged Kerr-Newman solution has gyromagnetic ratio g = 2, as that
of the Dirac electron [2, 3], and therefore, the KN gravitational field with
the observable parameters of the electron: spin, mass, charge and magnetic
momentum field corresponds to the electron background. However, due to
extremely high spin/mass ratio of the spinning particles, this background
is an over-rotating KN solution without horizons, and therefore, we arrive
to principal conclusion that black holes cannot be relevant to spinning par-
ticles. Instead, the relevant geometry should be over-rotating KN solution,
which contains a stringlike topological defect in the metric. Therefore, KN
background needs an additional regularization to flat metric required by
quantum theory. This 4d procedure turns out to be parallel to the enhan-
con model of the string/M-theory unification.

Relations of the Kerr solutions with string theory were noticed long ago.
In particular, the conjecture that the Kerr singular ring may be treated as
a closed string was first discussed in 1975 [12], and the complex Kerr string
was first considered in [13] (1993). Recently these strings were reobtained
by Adamo and Newman in [37], by analysis of the complex structure of the
asymptotically flat space-times, and they write emotionally “...It would
have been a cruel god to have layed down such a pretty scheme and not
have it mean something deep.”

In this paper we present extra remarkable evidence of the striking paral-
lelism between the Kerr geometry and superstring theory, namely, appear-
ance of the Calabi-Yau twofold in the complex twistorial structure of the
Kerr geometry. In the recent paper [24] we argued that this parallelism
is not accidental, because gravity is a fundamental part of the superstring
theory, and the Kerr-Schild gravity, being based on twistor theory, displays
also some additional inherent relationships with superstring theory. Roots
of that are apparently related with underlying twistor theory, which pro-
vided the base for conformal invariance and the lightlike structure of the
holographic projection, [33]. In fact the complex KS structure represents a
complex version of the holographic projection, performed by complex null
planes from the complex bulk on the real “screen-boundary”.

In many respects the Kerr-Schild gravity resembles the twistor-string the-
ory, [36, 38, 39], which is also four-dimensional, based on twistors and
related with experimental particle physics. On the other hand, the com-
plex Kerr string has much in common with the N=2 critical superstrings
[18, 17, 40]. It is also related with twistors and has the complex critical
dimension two which corresponds to four real dimensions and indicated
that N=2 superstring may lead to four-dimensions. However, signature of
the N=2 string may only be (2,2) or (4,0), which caused the obstacles for
embedding of this string in the space-times with Minkowskian signature.
Up to our knowledge, this trouble was not resolved so far, and the ini-
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tially enormous interest to N=2 string seems to be dampened. Meanwhile,
embedding of the N=2 string in the complexified Kerr geometry is almost
trivial task, and approach to a super-generalization is also almost evident
[41]. It hints that stringlike structures of the real and complex Kerr ge-
ometry are not only analogues, but may reflect the underlying twistorial
structure and dynamics of the N=2 superstring.

Along with wonderful parallelism with the standard superstring theory, the
stringy system of the four-dimensional KN geometry displays very essential
peculiarities. Recall that origin of the string theory is closely related with
experimental physics. In the recent historical paper J. Schwarz write that
the transfer to the modern multidimensional version of string theory and
choice for the fundamental string length scale 10−33 cm (the Planck length
instead of 10−13 cm) occurred by 1973-1975 as consequence of some crisis
in development of string theory, see [42]. He points out that price for this
step was very high, since as a result the : “...construction of a complete and
realistic model of elementary particles ...appears to be a distant dream.”

The described stringy structures of the 4d KS geometry show that com-
plexification of the Kerr geometry serves an alternative to traditional com-
pactification of higher dimensions. The supplementary Kaluza-Klein space
is absent, however the role of compactification circle is played by the closed
Kerr string based on the Kerr singular ring, which admits traveling waves,
realizing a ”compactification without compactification”, [24]. The lightlike
twistorial rays are tangent to the Kerr singular ring, showing that the Kerr
ring forms a lightlike fundamental string of the heterotic type, which is
similar to DLCQ circle of M(atrix) theory, [43].

We arrive at the conclusion that the desired consistency of the superstring
theory with physics of the spinning particles should be based on the com-
plexified and super-generalized over-rotating Kerr-Schild geometry, accom-
panied by embedding of the complex N=2 string in its complex structure.
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