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Instituciò Catalana de Recerca i Estudis Avançats (ICREA),
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in F (R), F (G) and F(R,G) modified gravities. The removal of the finite-time
future singularities via addition of R2-term which simultaneously unifies the early-
time inflation with late-time acceleration is also briefly mentioned. Accelerating
cosmology including the scenario unifying inflation with dark energy is considered
in F (R) gravity with Lagrange multipliers. In addition, we examine domain wall
solutions in F (R) gravity. Furthermore, covariant higher derivative gravity with
scalar projectors is explored.

PACS numbers: 04.50.Kd, 95.36.+x, 98.80.-k

1. Introduction

It is observationally implied that the current expansion of the universe is
accelerating. Provided that the universe is homogeneous, two representa-
tive approaches to account for the current cosmic acceleration exist. The
first is to assume the existence of the so-called dark energy whose pressure
is negative (for a recent review, see, e.g., [1]). The second is to consider
that a gravitational theory would be modified at the large distance scale.
The simplest theory is F (R) gravity (for reviews, see, for example, [2]).

In this paper, we examine the accelerating (dark energy) solutions of mod-
ified gravity which may produce future singularities. We concentrate on
reviewing the results in Refs. [3, 4, 5, 6] on theoretical aspects of modified
gravity theories with presenting dark energy components. In particular,
we study the finite-time future singularities in F (R), F (G) and F(R,G)
gravity theories [3, 7, 8], where R is the Ricci scalar, G ≡ R2 − 4RµνR

µν +
RµνρσR

µνρσ with Rµν and Rµνρσ the Ricci tensor and the Riemann tensor,
respectively, is the Gauss-Bonnet invariant, and F(R,G) is an arbitrary
function of R and G. This is a generalized gravity theory including both
F (R) and F (G) gravity theories. We also discuss the removal of the finite-
time future singularities in F (R) gravity via addition of R2-term which
simultaneously leads to the unification of early-time inflation with late-
time acceleration [9]. In the frameworks of F (G) or F(R,G) theory, the
corresponding term may be different, of course [3]. We note that as related
studies, the finite-time future singularities [10, 11, 12] and the realization of
the phantom phase including the crossing of the phantom divide [13] have
also been examined. Furthermore, the features of the finite-time future
singularities in non-local gravity [14], modified teleparallel gravity [15] and
its extended analysis in loop quantum cosmology (LQC) [16] has recently
been investigated. In addition, dark energy in the context of F (R) gravity
with Lagrange multipliers [4] is considered. We also present domain wall
solutions in F (R) gravity [5]. Moreover, covariant higher derivative gravity
with scalar projectors [6] is explained. We use units of kB = c = ~ = 1
and denote the gravitational constant 8πGN by κ2 ≡ 8π/MPl

2 = 1 with

the Planck mass of MPl = G
−1/2
N = 1.2× 1019GeV.

The paper is organized as follows. In Section 2, we explore accelerating
cosmologies leading to the finite-time future singularities in F (R), F (G)
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and F(R,G) gravity theories. In Section 3, we study dark energy in the
framework of F (R) gravity with Lagrange multipliers. In Section 4, we
examine domain wall solutions in F (R) gravity. In Section 5, we inves-
tigate covariant higher derivative gravity with scalar projectors. Finally,
conclusions are presented in Section 6.

2. Finite-time future singularities in F (R), F (G) and F(R,G)
gravity theories

2.1. F(R,G) gravity

The action of F(R,G) gravity is S =
∫
d4x

√
−g
[
F(R,G)/

(
2κ2
)
+ LM

]
,

where g is the determinant of the metric tensor gµν and LM is the matter
Lagrangian. This is a generic theory including both F (R) and F (G) gravi-
ties. We take the flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) met-

ric ds2 = −dt2 + a2(t)
∑

i=1,2,3

(
dxi
)2
. The Hubble parameter is given by

H = ȧ/a, where the dot denotes the time derivative of ∂/∂t. In the FLRW
background, with the gravitational field equations we find that the effective
(i.e., total) energy density and pressure of the universe read ρeff = 3κ−2H2

and Peff = −κ−2
(
2Ḣ + 3H2

)
, respectively. For the action in Eq. (1), we

obtain

ρeff ≡ 1

F,R

{
ρM +

1

2κ2

[
(F,RR−F)− 6HḞ,R +GF,G − 24H3Ḟ,G

]}
, (1)

Peff ≡ 1

F,R

{
PM +

1

2κ2

[
− (F,RR−F) + 4HḞ,R + 2F̈,R −GF,G

+ 16H
(
Ḣ +H2

)
Ḟ,G + 8H2F̈,G

]}
, (2)

where F,R ≡ ∂F(R,G)∂R and F,G ≡ ∂F(R,G)∂G, and ρM and PM are
the energy density and pressure of matter (which has been assumed to be
a perfect fluid).

2.2. Finite-time future singularities

Provided that the Hubble parameter is written as

H =
hs

(ts − t)β
+Hs , (3)

where hs(> 0), ts(> 0), Hs(≥ 0), and β(̸= 0) are constants, ts is the time
when a finite-time future singularity occurs, and 0 < t < ts. In what
follows, we consider the case of Hs = 0. We note that even if β < 0 and
β is a non-integer value, in the limit t → ts some derivative of H diverges
and hence the scalar curvature becomes infinity [10]. Moreover, since the
case of β = 0 leads to a de Sitter space, we suppose β ̸= 0.
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The finite-time future singularities are classified into four types [17]. Type
I (“Big Rip” [18]): In the limit t → ts, a → ∞, ρeff → ∞ and |Peff | → ∞.
The case that ρeff and Peff are finite values at t = ts [19] is included. This
happens for β = 1 and β > 1. In this paper, we regard the singularities
for β = 1 as “Big Rip” and those for β > 1 as “Type I”. (ii) Type II
(“sudden” [20]): In the limit t → ts, a → as, ρeff → ρs and |Peff | → ∞.
This occurs for −1 < β < 0. (iii) Type III: In the limit t → ts, a → as,
ρeff → ∞ and |Peff | → ∞. This appears for 0 < β < 1. (iv) Type IV: In
the limit t → ts, a → as, ρeff → 0, |Peff | → 0, and higher derivatives of H
diverge. The case that ρeff and/or |Peff | become finite values at t = ts is
also included. This is realized if β < −1 but β is not any integer number.
Here, as( ̸= 0) and ρs are constants.

2.3. F (R) gravity with finite-time future singularities

By taking F(R,G) = F (R), the action in Eq. (1) becomes that of F (R)
gravity. With the method to reconstruct modified gravity [10, 21, 22], for
the Hubble parameter to be represented in Eq. (3) we explore F (R) gravity
models in which finite-time future singularities can appear. By introducing
two proper functions P (ϕ) and Q(ϕ) of a scalar field ϕ, which we regard
as the cosmic time t, we rewrite the term F(R,G) = P (t)R + Q(t) in the
action in Eq. (1). In this case, by varying the action with respect to t we
acquire (dP (t)/dt)R+ dQ(t)/dt = 0. In principle, by solving this equation
we have the relation t = t(R). If we substitute it into the above form of
F(R,G) = P (t)R + Q(t), we find F (R) = P (t = t(R))R + Q(t = t(R))
and hence the original action is found again. We express the scale factor as
a(t) = ā exp (ḡ(t)) with ā a constant and ḡ(t) a proper function. Here, we
neglect the contribution from matter because when the finite-time future
singularities appears, the energy density of dark energy components are
completely dominant over that of matter. In this case, the gravitational
field equations yield

P̈ (t)− ˙̄g(t)Ṗ (t) + 2¨̄g(t)P (t) = 0 , Q(t) = −6
[
( ˙̄g(t))

2
P (t) + ˙̄g(t)Ṗ (t)

]
.

(4)
Accordingly, if we find the solutions P (t) and Q(t) of these equations, by
plugging those into F (R) = P (t)R + Q(t) with t = t(R) we obtain the
concrete form of F (R). We acquire the followings consequences.
(a) β = 1 [Big Rip]: For hs > 5 + 2

√
6 or hs < 5 − 2

√
6, F (R) ∝ Rq with

q ≡ (1/4)
(
3 + hs +

√
h2s − 10hs + 1

)
, whereas if 5− 2

√
6 < hs < 5 + 2

√
6,

F (R) ∝ R(hs+1)/4 × (Oscillating part).

(b) β > 1 [Type I]: F (R) ∝ exp

{
(hs/ [2 (β − 1))]

(
R

12hs

)(β−1)/(2β)
}
R−1/4×

(Oscillating part).

(c) 0 < β < 1 [Type III]: F (R) ∼ exp
[

hs
2(β−1) (−6βhsR)

(β−1)/(β+1)
]
R7/8.

(d) β < 0 [Type II (−1 < β < 0) and Type IV (β < −1 but β is not an inte-

ger)]: F (R) ∼ (−6hsβR)
(β2+2β+9)/[8(β+1)] exp

[
hs

2(β−1) (−6hsβR)
(β−1)/(β+1)

]
.
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Here, “∼” means the asymptotic behavior in the limit t→ ts.

It is remarkable that adding R2-term to such a theory, one removes future
singularity. (Note that R2 gravity was proposed as inflationary model in
Ref. [23] (celebrated Starobinsky inflation) and was used for the first unified
inflation-dark energy modified gravity proposed in Ref. [9]). Hence, we not
only remove singularities by adding R2 term but also unify the dark energy
era with inflation in such a way (for realistic models of such unification,
see [2]). Several viable F (R) gravity models which unify inflation with
dark energy and do not contain the finite-time future singularities are listed
below [2]:

F (R) = R+
b1R

2l − b2R
l

1 + b3Rl
+ b4R

2 , (5)

F (R) = R− 2Λ
[
1− e−R/(b5Λ)

]
− Λi

[
1− e−(R/Ri)

ς
]
+ b6R̃

−(τ−1)
i Rτ , (6)

with bj (j = 1, . . . , 4), b5(> 0), b6(> 0) and l constants. In Eq. (6), τ(>

1) is a natural number, ς and R̃i are constants, Ri and Λi are transition
curvature and expected cosmological constant at the inflationary stage,
respectively [24].

2.4. F (G) gravity with finite-time future singularities

With the same method as in F (R) gravity in Section 2.3, it is possible to
execute the reconstruction of F (G) gravity models in which the finite-time
future singularities occur. The action of F (G) gravity [25] is described by
Eq. (1) with F(R,G) = R + F (G). In this case, the gravitational field
equations yield

2
d

dt

(
˙̄g2(t)Ṗ (t)

)
− 2 ˙̄g3(t)Ṗ (t) + ¨̄g(t) = 0 , Q(t) = −24 ˙̄g3(t)Ṗ (t)− 6 ˙̄g2(t) .

(7)
The results are as follows [3].

(a) β = 1 [Big Rip]: For hs ̸= 1, F (G) =
{√

6h3s (1 + hs)/ [hs(1− hs)]
}√

G+

c1G
(hs+1)/4+c2G with c1 and c1 constants. If hs = 1, F (G) =

√
3
2

√
G ln (γG)

with γ(> 0) a positive constant.

(b) β > 1 [Type I]: F (G) = −
√
6
√
G.

(c) 0 < β < 1 [Type III], −1/3 < β < 0 [Type II], −1 < β < −1/3 [Type
II] and β < −1 (but β is not integer) [Type IV]: F (G) = 6h2s (3β + 1)(β +

1)−1
[
|G|/

(
24h3s |β|

)]2β/(3β+1)
.

(d) β = −1/3 [Type II] (this is a special value in this case): F (G) ≃[
1/
(
4
√
6h3s
)]
G
(
G+ 8h3s

)1/2
+
(
2/

√
6
) (
G+ 8h3s

)1/2
. We remark that the

finite-time future singularities appearing in the limit G → ±∞ can be
removed by the additional term d1G

ϱ, where d1( ̸= 0) is a constant, and ϱ >
1/2 and ϱ ̸= 1. Furthermore, the finite-time future singularities emerging



24 K. Bamba, S. Nojiri, S.D. Odintsov

in the limit G → 0− can be cured by adding the term d1G
ϱ, where ϱ(≤ 0)

is an integer [3].

2.5. F(R,G) gravity with finite-time future singularities

Using the similar procedure in Section 2.3, we reconstruct the form of
F(R,G) leading to the finite-time future singularities. With proper func-
tions P (ϕ), Z(ϕ) and Q(ϕ) of a scalar field ϕ, which we identify with t, we
represent the term F(R,G) in the action in Eq. (1) as P (t)R+Z(t)G+Q(t).
Varying this action with respect to t, we find (dP (t)/dt)R+(dZ(t)/dt)G+
dQ(t)/dt = 0. By solving this equation, we obtain t = t(R,G). Combin-
ing this and the above representation P (t)R + Z(t)G + Q(t), we acquire
F(R,G) = P (t)R + Z(t)G + Q(t). It follows from the gravitational field
equations, the conservation law, a(t) = ā exp (ḡ(t)), and H(t) = ˙̄g(t) that

d2P (t)

dt2
+ 4 ˙̄g2(t)

d2Z(t)

dt2
− ˙̄g(t)

dP (t)

dt

+ 4
(
2 ˙̄g¨̄g − ˙̄g3(t)

) dZ(t)
dt

+ 2¨̄g(t)P (t) = 0 , (8)

Q(t) = −6

(
4 ˙̄g3(t)

dZ(t)

dt
− ˙̄g2(t)P (t)− ˙̄g(t)

dP (t)

dt

)
. (9)

For P (t) ̸= 0, F(R,G) can be described as F(R,G) = Rg̃(R,G) + f̃(R,G)

with g̃(R,G)(̸= 0) and f̃(R,G) generic functions of R and G. We show the
results.

(a) β = 1 [Big Rip]: For 0 < hs < 5−2
√
6 or hs > 2+

√
6, we find F(R,G) =

α1R
q+ + α2R

q− + δG(hs+1)/4 with q± ≡ (1/4)
(
3 + hs ±

√
h2s − 10hs + 1

)
.

Here, α1, α2 and δ are constants. There also exists the following model:
F(R,G) = α

(f̃(R,G))x+2
R+ δ

(f̃(R,G))x
G− 6hs

(f̃(R,G))x+4

[
4h2sδx+ α(x+ 2 + hs)

]
,

where f̃(R,G) =

{
−α(x+2)R±

√
α2(x+2)2R2+24hs[4h2s δx+α(x+2+hs)](x+4)δxG

2δxG

}1/2

.

Here, α and x are constants.

(b) β > 1 [Type I]: F(R,G) = −4h2sλf(R,G)R + λ (f(R,G))1+2β G +

24h4sλ (f(R,G))
1−2β with f̃(R,G) =

[
h2sR+

√
h4sR

2+6h4s (4β
2−1)G

(1/2+β)G

]1/(2β)
, where

λ is a constant.

(c) β < 1 [Type II (−1 < β < 0), Type III (0 < β < 1), and Type IV
(β < −1 but β is not an integer)]: F(R,G) = R+ (3/2) (G/R). In Ref. [3],
it has been examine that the finite-time future singularities can be removed
by the term Rϑ1Gϑ2 , where ϑ1(> 0) and ϑ2(> 0) are positive integers.
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3. Dark energy from F (R) gravity with the Lagrange mul-
tipliers

In this section, we study F (R) gravity with the Lagrange multiplier field.
With F1(R) and F2(R) arbitrary functions of R, the action is expressed as

S =

∫
d4x

√
−g
[
F1(R)− λL

(
1

2
∂µR∂

µR+ F2(R)

)]
, (10)

where λL is the Lagrange multiplier field and yields a constraint equation
(1/2) ∂µR∂

µR + F2(R) = 0. The variation of the action in Eq. (10) with
respect to gµν leads to the gravitational field equation as

1

2
gµνF1(R) +

1

2
λL∂µR∂νR+ (−Rµν +∇µ∇ν − gµν2)

×
[
dF1(R)

dR
− λL

dF2(R)

dR
−∇µ (λL∇µR)

]
= 0 , (11)

where ∇µ is the covariant derivative and 2 ≡ gµν∇µ∇ν is the covariant
d’Alembertian. For the de Sitter space-time, which realize the current cos-
mic accelerated expansion, i.e., the dark energy dominated stage, the scalar
curvature is a positive constant valueR0 and hence the Ricci tensor becomes
Rµν = (1/4)R0gµν . In this case, from the above constraint equation and
Eq. (11), we have λL = [−2F1(R0) +R0 (dF1(R0)/dR)] / [R0 (dF2(R0)/dR)].
Moreover, in the flat FLRW background, the above constraint equation
reads − (1/2) Ṙ2 + F2(R) = 0. For F2(R) > 0, this equation can be

solved in terms of t as t =
∫ R

dR/
√

2F2(R). Provided that the form
of H(t) is given by the analysis of the observational data, F2(R) is able
to be reconstructed so that the evolution of H(t) can be reproduced. It
follows from R = 6

[
dH/dt+ 2H2

]
that H(t) presents the evolution of

R = R(t), and by solving this equation inversely, we can find t = t(R).

Thus, we acquire F2(R) = (1/2) (dR/dt)2 with t = t(R). We note that
F1(R) is an arbitrary function of R. As an example, we consider H(t) =
h0/t with h0 > 1 leading to a(t) = a0t

h0 , where h0 and a0 are con-
stants. In this case, the accelerated expansion of the universe or power-
law inflation happens. We have R = 6h0 (−1 + 2h0) /t

2, from which we

also acquire t =
√

6h0 (−1 + 2h0) /R. Using these relations, we obtain
F2(R) = R3/ [12h0 (−1 + 2h0)]. As another example, we examine the case
that R is described by R = (R−/2) (1− tanhωt) + (R+/2) (1 + tanhωt)
with R±(> 0) and ω(> 0) positive constants. In the limit t → ±∞,
R → ±R±, and therefore the universe asymptotically approaches the de
Sitter space-time. In this case, we can regard that in the limit t →
−∞, inflation in the early universe occurs, whereas that in the limit t →
+∞, the late-time cosmic acceleration happens. We also have F2(R) =

(1/8) (R− −R+)
2 ω2

[
1− (R− +R+ − 2R)2 / (R− −R+)

2
]2
. As a conse-

quence, for the above R, this F (R) gravity model with the constraint origi-
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nating from the Lagrange multiplier can be a unified scenario between infla-
tion and dark energy era, although it should carefully be studied whether
the reheating stage after inflation can be realized. Furthermore, F1(R)
does not affect cosmological evolution of the universe and influences only
the correction of the Newton law. Thus, cosmology is determined only by
the form of F2(R).

To explore the Newton law, we take F1(R) = R/
(
2κ2
)
as the Einstein-

Hilbert term and add matter. In this case, for λL = 0, from Eq. (11)

we find the Einstein equation [Rµν − (1/2) gµνR] = κ2T
(M)
µν with T

(M)
µν the

energy-momentum tensor of matter Its trace equation reads R = −κ2T (M),

where T (M) is the trace of T
(M)
µν . Moreover, the constraint equation is

given by
(
κ4/2

)
∂µT∂

µT + F2

(
−κ2T

)
= 0. Since this is not always met,

we should modify the constraint equation as (1/2) ∂µR∂
µR + F2(R) −(

κ4/2
)
∂µT∂

µT (M) − F2

(
−κ2T

)
= 0. Thus, this implies that the action

with the constraint coming from the Lagrange multiplier field and matter
should be described by

S =

∫
d4x

√
−g
{
R

2κ2
− λL

[
1

2
∂µR∂

µR+ F2(R)−
κ4

2
∂µT

(M)∂µT (M)

− F2

(
−κ2T (M)

)]
+ LM

}
, (12)

For the case of the vacuum such that T (M) = 0, the constraint equation is
(1/2) ∂µR∂

µR+F2(R)−F2 (0) = 0. If F2 (0) = 0, e.g., the first example of
F2(R) = R3/ [12h0 (−1 + 2h0)] shown above, this is equivalent to the con-
straint equation derived from the action in Eq. (10). In this case, there exist

two types of the solutions in the constraint equation− (1/2) Ṙ2+F2(R) = 0.

One is R = 0 and the other is presented by t =
∫ R

dR/
√

2F2(R). On
the small scales of, e.g., the solar system and galaxies, the solution would
be the first solution of R = 0 so that the Newton law can be recovered.
On the other hand, in the bulk of the universe, the solution should be

t =
∫ R

dR/
√

2F2(R) in order that the cosmic evolution can be realized. It
is not so clear whether the first solution on the small scales of the solar sys-
tem and galaxies and the second one in the bulk universe can be connected
in the intermediate scales.

4. Domain wall solutions in F (R) gravity

In this section, we investigate a static domain wall solution and reconstruct
an F (R) gravity model with realizing it [5].

4.1. Static domain wall solution in a scalar field theory

To begin with, we study a static domain wall solution in a scalar field the-
ory. We suppose that the following D = d + 1 dimensional warped metric

ds2 = dy2 +eu(y)
∑d−1

µ,ν=0 ĝµνdx
µdxν , and that the scalar field only depends
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on y. In this background, the metric in the d-dimensional Einstein man-
ifold is ĝµν , defined by R̂µν =

[
(d− 1) /l2

]
ĝµν . In addition, for 1/l2 > 0,

the space is the de Sitter one, for 1/l2 > 0, it is the anti-de Sitter, and
for 1/l2 = 0, it is the flat. Following the procedure proposed in Ref. [26],
it has been demonstrated that a static domain wall solution can exist in a
scalar field theory [5] (a developed study on a static domain wall solution
in a scalar field theory has also been executed in Ref. [27]). We inves-
tigate the action S =

∫
dDx

√
−g
[(
R/2κ2

)
− (1/2)ω(φ)∂µφ∂

µφ− V(φ)
]
,

where ω(φ) is a function of the kinetic term of a scalar field φ and V(φ)
is a potential of φ. In the above D dimensional warped metric, with the
(y, y) and (µ, ν) components of the Einstein equation, we obtain the ex-
pressions of ω(φ) and V(φ). Using these expressions, the energy density is

described as ρφ ≡ (1/2)ω(φ) (φ′)2+V(φ). As an example, we consider u =
u0 exp

(
−y2/y20

)
, where u0 and y0 are constants. In this case, the distribu-

tion of ρφ reads ρφ(y) = −
[
(d− 1) /

(
2y20
)] [(

2y2/y20
)
− 1
]
exp

(
−y2/y20

)
+[

(d− 1)2 /l2
]
exp

[
−u0 exp

(
−y2/y20

)]
. Accordingly, the energy density of

φ is localized at y ∼ 0 and thus a domain wall is made. We note that a
condition for ρφ to be localized is u→ 0 in the limit |y| → ∞.

4.2. Reconstruction of the form of F (R)

In the D dimensional warped metric, the (y, y) component and the trace
of (µ, ν) components of the gravitational field equation read

d− 1

2
u′ (F,R)

′ − d

2

[
u′′ +

1

2

(
u′
)2]

F,R − 1

2
F = κ2T (M)

yy , (13)

d (F,R)
′′ +

d (d− 2)

2
u′ (F,R)

′ +

{
−d
2

[
u′′ +

d

2

(
u′
)2]

+
d (d− 1)

l2
e−u
}
F,R

− d

2
F = κ2

d−1∑
µ,ν=0

gµνT (M)
µν , (14)

where the prime denotes the derivative with respect to y of d/dy, and
(F,R)

′ ≡ dF,R/dy and (F,R)
′′ ≡ d2F,R/dy

2. We examine an explicit form
of F (R) with leading to a domain wall solution for the case that matter
is absent. For the model u = u0 exp

(
−y2/y20

)
, with the relation R =

−d
{
u′′ + [(1 + d) /4] (u′)2

}
+
[
d (d− 1) /l2

]
e−u, y can be described as a

function of R, y = y(R), and eventually we find u = u(y(R)). By plugging
this equation into Eqs. (13) and (14) and eliminating y, Eqs. (13) and
(14) can be expressed as differential equations in terms of F (R). Here, it is
enough to analyze Eq. (13) because Eq. (14) is not independent of Eq. (13).
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As a result, Eq. (13) can be rewritten to

Ξ1(R)
d2F (R)

dR2
+ Ξ2(R)

dF (R)

dR
− F (R) = 0 , (15)

Ξ1(R) ≡ (d− 1)u′
dR

dy
= (d− 1)

(
dR

dy

)2 du(y(R))

dR
, (16)

Ξ2(R) ≡ (−d)
[
u′′ +

1

2

(
u′
)2]

= (−d)
[
d2R

dy2
du(y(R))

dR

+

(
dR

dy

)2 d2u(y(R))

dR2
+

1

2

(
dR

dy

)2(du(y(R))
dR

)2
]
. (17)

To solve the above relation of R in terms of y, by defining Y ≡ y2/y20 and
expanding exponential terms in the limit Y = y2/y20 ≪ 1, we take only
the first leading terms in terms of Y . We find Y = y2/y20 ≈ (R− γ1) /γ2
with γ1 ≡

(
2du0/y

2
0

)
+ d (d− 1) /l2 and γ2 ≡ −d

(
u0/y

2
0

)
[6 + (1 + d)u0] +[

d (d− 1) /l2
]
u0, where γ1 and γ2 are constants. Finally, for Y = y2/y20 ≪

1, Eq. (15) can be described by
(
d2F (R)/dR2

)
+C (dF (R)/dR)+DF (R) = 0

with C ≡ Ξ
(0)
2 /Ξ

(0)
1 and D ≡ −1/Ξ

(0)
1 , where Ξ

(0)
1 and Ξ

(0)
2 constants

described by the model parameters d, l, u0 and y0. We acquire a gen-
eral solution of this equation as F (R) = F+e

λ+R + F−e
λ−R, where λ± ≡

(1/2)
(
−C ±

√
C2 − 4D

)
, and F± are arbitrary constants. Here, the sub-

scriptions ± of λ± correspond to the sign “±” on the right-hand side of
this equation. In the model u = u0 exp

(
−y2/y20

)
, at y ∼ 0 the distribution

of the energy density is localized and therefore a domain wall is realized as
shown above. Consequently, for an exponential model of F (R) gravity, a
domain wall can appear at y ∼ 0.

4.3. Effective (gravitational) domain wall

Next, with the reconstruction method [21, 22], we explore an effective (grav-
itational) domain wall in F (R) gravity. With the same procedure as in
Section 2.3, we study the action of F (R) gravity given by F(R,G) = F (R).
Using two proper functions P (ψ) and Q(ψ) of a scalar field ψ, we rep-
resent the term F(R,G) = P (ψ)R + Q(ψ). The variation over ψ yields
(dP (ψ)/dψ)R + dQ(ψ)/dψ = 0. Solving this equation with respect to
ψ leads to ψ = ψ(R), by substituting which into the action in Eq. (1)
with F(R,G) = P (ψ)R + Q(ψ), we acquire the action of F (R) gravity as
F (R) = P (ψ(R))R+Q(ψ(R)). In the D dimensional warped metric shown
in Section 4, for the case that ψ depends only on y, it follows from the
gravitational field equation with the choice of ψ = y and 1/l2 = 0 (i.e., the
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flat space), we have

u′(ψ) = − 2

d− 1

[
P ′(ψ)

P (ψ)
+

d

d− 1
(P (ψ))1/(d−1)

×
∫
dψ (P (ψ))−(2d−1)/(d−1) (P ′(ψ)

)2]
, (18)

Q(ψ) =
d(d− 1) (u′(ψ))2

4
P (ψ) + (d− 1)u′(ψ)P ′(ψ) , (19)

where the prime denotes the derivative with respect to ψ(= y) of d/dψ.

For a model P (ψ) = (U(ψ))−2(d−1) and U(ψ) = U0

(
ψ2 + ψ2

0

)χ
with U0, ψ0

and χ constants, we acquire

u′(ψ) =
2χψ

ψ2 + ψ2
0

− 32dχ2ψ4χ−1(
ψ2 + ψ2

0

)2χ
×

∞∑
k=0

Γ (2χ− 1)

(4χ− 1− 2k) Γ (2χ− 1− k) k!

(
ψ2
0

ψ2

)k
. (20)

In the range where ψ = y is large, we take χ = −1/ [4 (4d− 1)] and impose
the boundary condition that in the limit |y| = |ψ| → ∞, the universe
asymptotically approaches flat as u → 0. As a result, we obtain u(ψ) =

−{1/ [4 (6d− 1)]} (ψ0/ψ) + O
(
(ψ0/ψ)

3
)
. From this expression, we see

that u(ψ) performs a non-trivial behavior at ψ = y ∼ 0. Hence, it can
be considered that an effective (gravitational) domain wall could appear at
y = 0. Moreover, by using the representation u′(ψ) = (4U ′(ψ)/U(ψ)) −(
8d/U(ψ)2

) ∫
dψ (U ′(ψ))2, we acquire an integration expression of u(ψ) as

u(ψ) = 8χ

∫ ψ

−∞
dψ

ψ

ψ2 + ψ2
0

− 32dχ2

∫ ψ

−∞
dψ

1(
ψ2 + ψ2

0

)2χ ∫ ψ

0
dψ̃
(
ψ̃2 + ψ2

0

)2(χ−1)
ψ̃2 . (21)

In Ref. [5], it has numerically been verified that there exists a local max-
imum of u(ψ) at ψ = y ∼ 0, and thus an effective (gravitational) domain
wall could be realized at y = 0. Also, there occurs such a qualitative behav-
ior of u(ψ) in terms of ψ regardless of the values of the model parameters.

In addition, we mention that for U(ψ) = U0

√
ψ2 + ψ2

0, i.e., χ = 1/2, there
exists an analytic solution

u(ψ) = 2 (1− 2d) ln
(
ψ2 + ψ2

0

)
+ 4d

(
arctan

(
ψ√
ψ2
0

))2

+ C , (22)
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with C an integration constant. In this case, for the region of a small
amplitude of ψ, it is considered that the distribution of the energy density
is localized, so that an effective (gravitational) domain wall could be made.

As a demonstration, we reconstruct an explicit F (R) form for u(ψ) in
Eq. (22), although only in the region of a small amplitude of ψ, the distribu-
tion of the energy density could be regarded as an effective (gravitational)
domain wall. From P ′(ψ)R+Q′(ψ) = 0 and Eq. (19), we have

R = −Q
′(ψ)

P ′(ψ)
= −(d− 1)

2P ′(ψ)

(
du′(ψ)u′′(ψ) + 2u′′(ψ)P ′(ψ) + 2u′(ψ)P ′′(ψ)

)
.

(23)
Solving this equation, an analytic relation ψ = ψ(R) can be found. With
this relation, we acquire F (R) = P (ψ(R))R + Q(ψ(R)). In this case, we

have P (ψ) = (U0ψ0)
−2(d−1) (1 + Ȳ

)−2(d−1)
. For Ȳ ≡ ψ2/ψ2

0 ≪ 1, by ex-

panding Eq. (19) in terms of Ȳ and taking the leading terms, we find R =
R0 +R1Ȳ . Furthermore, from Eq. (19) we also obtain Q = Q1Ȳ +Q2Ȳ

2.
Here, R0, R1, Q1 and Q2 are constants and these are written by using the
model parameters d, U0 and ψ0. Moreover, with R = R0 + R1Ȳ we de-
scribe Ȳ = Ȳ0 + Ȳ1R, where Ȳ0 ≡ −R0/R1 and Ȳ1 ≡ 1/R1. P (ψ) can also

be expanded as P (ψ) ≈ (U0ψ0)
−2(d−1) {1− (d− 1) Ȳ + [d (d− 1) /2] Ȳ 2

}
.

By plugging this relation and Q = Q1Ȳ + Q2Ȳ
2 with Ȳ = Ȳ0 + Ȳ1R into

F (R) = P (ψ(R))R + Q(ψ(R)) and taking terms of order of R2, we find
F (R) = F0 + F1R + F2R

2, where F0, F1 and F2 are constants and these
are represented by the model parameters d, U0 and ψ0. The above explicit
form of F (R) has been derived for Ȳ = ψ2/ψ2

0 ≪ 1. Hence, it follows from
R = R0+R1Ȳ that this F (R) form can be considered to correspond to the
one for R ∼ O(1) if R0 ∼ O(1). Therefore, when we choose F0 = 0 and
F1 = 1, we have F (R) = R + F2R

2. In this case, for the small curvature
limit, F (R) approaches R, i.e., general relativity, asymptotically. As a re-
sult, if u(ψ) is given by Eq. (22) in which an effective (gravitational) domain
wall can be realized, an explicit form of F (R) is expressed as a power-law
model. We state the difference between the domain walls in Sections 4.2 and
4.3. A pure gravitational effect yields an effective (gravitational) domain
wall in Section 4.3, but a scalar field makes a static domain wall solution
explored in Section 4.1. In Section 4.2, the deviation of F (R) gravity from
general relativity is equivalent to matter geometrically, i.e., a scalar field in
Section 4.1.

5. Covariant higher derivative gravity with scalar projectors

It is considered that a covariant gravity which is power-counting renormal-
izable would be higher derivative theory, e.g., models in Ref. [28]. Higher
derivative gravity is very well known to be renormalizable multiplicatively
(for a review, see, for example, [29]). However, in general, such a higher
derivative theory cannot keep the unitarity. To retain it, the so-called
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Hořava gravity [30] has been proposed. In this section, we make the for-
mulation for covariant higher derivative gravity with Lagrange multiplier
constraint as well as scalar projectors. In particular, we construct a gravity
theory with the Lorentz symmetry and/or the full general covariance in
the action, although these symmetry and/or covariance is spontaneously
broken. In such a theory, the propagator of the graviton in the ultraviolet
(UV) region can be improved better, whereas there appears no extra mode
such as a scalar one.

5.1. Model

We explore the following action with the Lagrange multiplier field λL [4, 31]
as well as the scalar field Φ: SL = −

∫
d4x

√
−gλL

[
(1/2) ∂µΦ∂

µΦ+ W̄
]
,

where µ and ν run 0, 1, 2, 3 and the 0 component denotes the time t as
∂0 ≡ ∂/∂t. From this action, we find a constraint equation (1/2) ∂µΦ∂

µΦ+
W̄ = 0. This means that the vector quantity (∂µΦ) is time-like one. Hence,
this breaks the Lorentz symmetry and/or the full general covariance spon-
taneously. For simplicity, we assume that W̄ is a constant, although this
assumption is not necessary for the symmetry and/or covariance to sponta-
neously be broken. Furthermore, the direction of time can be taken so that
it should be parallel to the vector quantity (∂µΦ). In this case, we have

(1/2) (dΦ/dt)2 = W̄ , from which we have Φ =
√
2W̄ t. Accordingly, the

spatial region is a hypersurface with a constant Φ because the hypersurface
becomes orthogonal to the vector quantity (∂µΦ). In the flat space-time,
we examine the perturbations as gµν = ηµν + hµν with ηµν the Minkowski
metric and hµν corresponds to the fluctuations, i.e., the deviation of gµν
from the Minkowski background ηµν . A projection operator is defined as
P ν
µ ≡ δ ν

µ + (∂µΦ∂
νΦ) /

(
2W̄

)
with P µ

0 = 0. As a result, the action de-
scribing a higher derivative gravity with scalar projector which is covariant
and power-counting renormalizable is expressed as

S2n+2 =

∫
d4x

√
−g
{
R

2κ2
− ζ

[
(∂µΦ∂νΦ∇µ∇ν − ∂µΦ∂

µΦ∇ρ∇ρ)
n P µ

α P ν
β

×
(
Rµν −

1

2W̄
∂ρΦ∇ρ∇µ∇νΦ

)]
[(∂µΦ∂νΦ∇µ∇ν − ∂µΦ∂

µΦ∇ρ∇ρ)
n

×PαµPβν

(
Rµν −

1

2W̄
∂ρΦ∇ρ∇µ∇νΦ

)]
− λL

(
1

2
∂µΦ∂

µΦ+ W̄

)}
, (24)

S2n+3 =

∫
d4x

√
−g
{
R

2κ2
− ζ

[
(∂µΦ∂νΦ∇µ∇ν − ∂µΦ∂

µΦ∇ρ∇ρ)
n P µ

α P ν
β

×
(
Rµν −

1

2W̄
∂ρΦ∇ρ∇µ∇νΦ

)] [
(∂µΦ∂νΦ∇µ∇ν − ∂µΦ∂

µΦ∇ρ∇ρ)
n+1

×PαµPβν

(
Rµν −

1

2W̄
∂ρΦ∇ρ∇µ∇νΦ

)]
− λL

(
1

2
∂µΦ∂

µΦ+ W̄

)}
. (25)
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Here, Eqs. (24) and (25) are for z = 2n+2 and z = 2n+3 (n = 0, 1, 2, . . . ),
respectively, where z is the quantity denoting the anisotropy between the
time and spatial coordinates [30]. Moreover, the gravitational field equa-

tion is given by
[
1/
(
2κ2
)]

[Rµν − (1/2) gµνR]+G
(higher)
µν −(λL/2) ∂µΦ∂νΦ+

(1/2) gµν
[
(1/2) ∂ρΦ∂

ρΦ+ W̄
]
= 0 withG

(higher)
µν the higher derivative term,

i.e., the second term, in the actions in Eq. (24) and (25). Suppose the flat
vacuum solution, the constraint equation (1/2) ∂µΦ∂

µΦ + W̄ = 0 becomes

(1/2) (dΦ/dt)2 = W̄ . For the flat space solution, the gravitational field
equation is reduced to λL∂µΦ∂νΦ = 0, because all of the term ∇µ∇νΦ
as well as the curvature terms vanish. The solution is given by λL = 0,
because ∂µΦ ̸= 0 owing to (1/2) ∂µΦ∂

µΦ + W̄ = 0. Thus, in these actions
in Eqs. (24) and (25) solutions with λL = 0 in the flat space vacuum can
be realized. We further analyze the perturbations hµν with λL = 0. Using
the diffeomorphism invariance in terms of the time coordinate, as a gauge

condition for the unitarity, we set Φ =
√
2W̄ t. By taking only the quadratic

terms of the perturbations, we rewrite the actions in Eqs. (24) and (25).
At this stage, there remains the diffeomorphism invariance in terms of the
spatial coordinates. In addition, the term h0i in the higher derivative term
with a coefficient ζ does not exist in the rewritten actions. Moreover, the
above constraint equation leads to h00 = 0. We derive the equations by
varying the actions in Eqs. (24) and (25) with respect to h00 and Ψ. We
decompose h0i as h0i∂is + vi with ∂ivi = 0, where s is the spatial scalar
quantity and vi is a vector field. The invariance in terms of the spatial
coordinates under the transformations of the linearized diffeomorphism is
described as δxi = ∂iu + wi with ∂iw

i = 0, where u is the spatial scalar
quantity and wi is a vector field. We find the following transformations un-
der the diffeomorphism: δs = ∂tu and δvi = ∂twi. Accordingly, the gauge
condition s = vi = 0, i.e., hti = 0 can be chosen. Furthermore, we express
hij as hij = δijA + ∂jBi + ∂iBj + Cij +

[
∂i∂j − (1/3) δij∂k∂

k
]
E, where A

and E are scalar quantities, Bi is a vector field, and Cij is a tensor field.
Here, ∂iBi = 0, ∂iCij = ∂jCij = 0, and C i

i = 0. As a result, we acquire
λL = 0 and vector Bi = 0, and thus the scalar λL and vector Bi modes do
not propagate. We fix the gauge in the actions rewritten above. We vary
these actions over A and E and obtain equations. From these equations and
A = (1/3) ∂k∂

kE, which is derived by the equation derived by the variation
of the action with respect to h0i with the above decomposed representation
of hij , we find ∂20A = 0. Hence, since A and E have only the dependence
on the spatial coordinate, these scalar quantities do not propagate. As a
consequence, all the scalar modes Φ, λL, h00, s, A and E and all the vec-
tor modes vi and Bi do not propagate, whereas the propagating mode is
only the tensor mode Cij , namely, a massless graviton. This is a different
feature from the Hořava gravity [30] without the Lorentz invariance. The
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final expressions of the actions in Eqs. (24) and (25) are given by

S2n+2 =

∫
d4x

{
1

8κ2

[
Cij

(
−∂20 + ∂k∂

k
)
Cij
]

− 22n−2ζW̄ 2n

[(
∂k∂

k
)n+1

Cij

] [(
∂k∂

k
)n+1

Cij
]}

, (26)

S2n+3 =

∫
d4x

{
1

8κ2

[
Cij

(
−∂20 + ∂k∂

k
)
Cij
]

− 22n−1ζW̄ 2n+1

[(
∂k∂

k
)n+1

Cij

] [(
∂k∂

k
)n+2

Cij
}]

. (27)

Therefore, in the momentum space the propagator reads

⟨hij(p)hkl(−p)⟩ = ⟨Cij(p)Ckl(−p)⟩

=
1

2

[(
δij −

pipj
p2

)(
δkl −

pkpl
p2

)
−
(
δik −

pipk
p2

)(
δjl −

pjpl
p2

)
−
(
δil −

pipl
p2

)(
δjk −

pjpk
p2

)]
×
{

1/
[
p2 − 22nζκ2W̄ 2np4(n+1)

]
, for z = 2n+ 2

1/
[
p2 − 22n−1ζκ2W̄ 2n+1p2(2n+3)

]
, for z = 2n+ 3

, (28)

with p2 =
∑3

i=1

(
pi
)2

and p2 = −
(
p0
)2

+ p2. If ζ > 0 and p0 = 0, when

22nζκ2W̄ 2np4n+2 = 1 for z = 2n + 2 and 22n−1ζκ2W̄ 2n+1p4(n+1) = 1 for
z = 2n + 3 are satisfied, the tachyonic pole exists. Thus, at least the flat
vacuum is unstable. In this model, at least on the tree level, no propagating
vector or scalar mode exists. The fact that the tensor structure of the
propagator in Eq. (28) changes implies that the vector or scalar mode could
emerge. In other words, the vector or scalar mode has to be a composite
state. At any perturbative level, this does not appear usually. Accordingly,
the quantum corrections should not change the tensor structure. In the UV
region with large k, for z = 2 (n = 0) in Eq. (26), the propagator evolves

as 1/ |k|4. Hence, the UV behavior performs. While, for z = 3 (n = 0)

in Eq. (27), the propagator evolves as 1/ |k|6. Thus, the model is power-
counting renormalizable. For z = 2n+ 2 (n > 1) in Eq. (26) or z = 2n+ 3
(n > 1) in Eq. (27), the model is power-counting super-renormalizable.
In the high energy regime, the dispersion relation of the graviton becomes
ω = c̄kz with c̄(> 0) a positive constant for the consistency of the dispersion
relation. Here, ω is the angular frequency which corresponds to the energy
and k is the wave number which does to the momentum. Accelerating
cosmology in such a theory was studied in Ref. [6].

6. Conclusions

We have studied the accelerating (dark energy) solutions of modified grav-
ity. These solutions may yield future singularities. We have explored the
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finite-time future singularities in F (R), F (G) and F(R,G) gravity theories.
The removal of the finite-time future singularities in F (R) gravity by adding
an R2-term which simultaneously leads to the unification of early-time infla-
tion with late-time acceleration [9] has been mentioned. The corresponding
term may be different for F (G) or F(R,G) gravity theory [3]. Moreover,
we have studied dark energy in F (R) gravity with the Lagrange multi-
plier field. Furthermore, domain wall solutions in F (R) gravity have been
presented. In addition, we have investigated covariant higher derivative
gravity with scalar projectors.
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