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Abstract

We present noncommutative corrections in a de Sitter gauge theory of gravity
obtained using an analytical procedure with GRTensorII under Maple that we
conceived to be applied for different solutions. First, the gauge fields lead to the
components of field strength tensor and to other tensors and scalars of de Sitter
gauge theory of gravity over the commutative space-time. Following the Seiberg-
Witten map and using recursive formulas, the corrections are followed until second
order through the second part of analytical procedure. The noncommutative ana-
logue of the metric tensor is presented for the mapped solutions.

1. Introduction

The physics at very short distances, namely at Planck scale, requires dif-
ferent approach. At this scale the gravity is expected to be unified with
the other fundamental forces but the exact mechanism remains unknown.
Since in quantum field theory the classical dynamical variables become non-
commutative it is naturally to analyze noncommutative features of gravity
at this scale. The description of space-time as noncommutative space-time
modifies the structure of the gravitational field. We study how the non-
commutativity of space-time deform, through noncommutative parameters,
some solutions of a gauge theory of gravity. The study is realized with some
new analytical procedures conceived with GRTensorII under Maple that we
designed for the specific quantities of the gauge theory of gravity. In the first
procedure, for a de Sitter gauge theory of gravity, we define the gauge fields
and we calculate the field strength tensors. This procedure is applied for
several solutions in the de Sitter gauge theory of gravity and, for a vanishing
torsion analogue, the specific quantities lead to the invariant action that
is equivalent to Einstein action. The second procedure, based on Seiberg-
Witten map, is that for the noncommutativity of the space-time, where
we define the noncommutativity parameter and through the ∗-product we
calculate, recursively, the leading deformation terms for gauge fields and
field strength tensors, following them until second order. We present the
analogous metric tensor for several solutions.

∗ e-mail address: simona.pretorian@et.upt.ro

11



12 Simona Babeti (Pretorian)

We work with the model of gauge theory of gravitation that has the de-
Sitter (DS) group SO(4,1) (10 dimensional) [1] as local symmetry and as
base manifold, the commutative 4-dimensional Minkowski space-time, en-
dowed with spherical symmetry:

ds2 = −dt2 + dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (1)

The 10 infinitesimal generators of DS group MAB = −MBA, A,B=0,1,2,3,5,
can be identified with translations Pa = −Ma5 and Lorentz rotationsMab =
−Mba , a, b = 0,1,2,3. The 10 corresponding (non-deformed) gauge fields
(or potentials) are ωAB

µ (x) = −ωBA
µ (x). They are identified with the four

tetrad fields (the gauge field of translational generator), ωa5
µ (x) = eaµ(x),

and the six antisymmetric spin connection ωAB
µ (x) = −ωBA

µ (x). The field

strength tensor, associated with the gauge fields ωAB
µ (x), which takes its

values in the Lie algebra of the DS group (Lie algebra-valued tensor) is [2]:

FAB
µν = ∂[µω

AB
ν] + ωAC

[µ ωDB
ν] ηCD, (2)

with ηAB = diag(−1, 1, 1, 1, 1) and the brackets indicate antisymmetriza-
tion of indices. The field strength tensor can be separated in torsion and
curvature tensors:

F a
µν = ∂[µe

a
ν] + ωab

[µ e
c
ν]ηbc, (3)

F ab
µν = ∂[µω

ab
ν] + ωac

[µω
db
ν] ηcd + 4λ2ea[µe

b
ν], (4)

where λ is a real parameter. For λ → 0 we obtain the ISO(3,1), i.e., the
commutative Poincaré gauge theory of gravitation. Defining gµν = ηabe

a
µe

b
ν ,

the scalar F = F ab
µν ē

µ
a ē

ν
b , with eaµē

µ
b = δab , and e = det(eaµ), the gauge

invariant action associated with the gauge fields is S = − 1
16πG

∫
d4xeF .

Although the action appears to depend on the non-diagonal ωAB
µ it is a

function on gµν only.

2. Gauge fields solutions in the commutative theory

For a point like source of mass m and constant electric charge Q we adopt
[2] the following gauge fields:

e0µ = (A, 0, 0, 0) , e1µ =

(
0,

1

A
, 0, 0

)
,

e2µ = (0, 0, rC, 0) , e3µ = (0, 0, 0, rC sin θ) , (5)

ω01
µ = (−U(r), 0, 0, 0) , ω02

µ = ω03
µ = (0, 0, 0, 0) , ω12

µ = (0, 0, Y (r), 0) ,

ω13
µ = (0, 0, 0,H(r) sin θ) , ω23

µ = (S(r), 0, 0,− cos θ) , (6)
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where A, U, Y, H, S are functions of 3D radius r. If the components of
F a
µν vanish then the spin connection components, ωab

µ , are determined by
tetrads eaµ and, with the supplementary condition C = 1, we obtain:

ω01
µ =

(
AA′, 0, 0, 0

)
, ω02

µ = ω03
µ = (0, 0, 0, 0) , ω12

µ = (0, 0,−A, 0) ,

ω13
µ = (0, 0, 0,−A sin θ) , ω23

µ = (0, 0, 0,− cos θ)) . (7)

The solution of field equations for gravitational gauge potentials eaµ(x) with

energy-momentum tensor for electromagnetic field [4] can be find as: A2 =

1− 2m
r − Λ

3 r
2 − Q2

r2
, with the λ parameter identified with the cosmological

constant 4λ2 = −Λ
3 .

In the case of equivalent Robertson-Walker metric, the particular ansatz
[3] for gauge fields

e0µ = (N(t), 0, 0, 0) , e1µ =
(
0, a(t)/

√
1− kr2, 0, 0

)
,

e2µ = (0, 0, ra(t), 0) , e3µ = (0, 0, 0, ra(t) sin θ) , (8)

ω01
µ = (0, U(t, r), 0, 0) , ω02

µ = (0, 0, V (t, r), 0) ,

ω03
µ = (0, 0, 0,W (t, r) sin θ) , ω12

µ = (0, 0, Y (t, r), 0) ,

ω13
µ = (0, 0, 0,H(r) sin θ) , ω23

µ = (0, 0, 0,− cos θ) , (9)

with the constant k and the functions U, V, W, Y, H of time t and 3D
radius r, leads for F a

µν = 0 to

ω01
µ =

(
0,−ȧ(t)/

√
1− kr2, 0, 0

)
, ω02

µ = (0, 0, rȧ(t), 0) ,

ω03
µ = (0, 0, 0, rȧ(t) sin θ) , ω12

µ =
(
0, 0,

√
1− kr2, 0

)
,

ω13
µ =

(
0, 0, 0,

√
1− kr2 sin θ

)
, ω23

µ = (0, 0, 0,− cos θ) . (10)

The spin connection components ωab
µ are, therefore, determined by the

tetrads eaµ. We imposed the supplementary condition N(t) = 1.

For a spinning source of mass m we adopt the four tetrad fields:

e0µ =

√
∆

Σ
, 0, 0,−a sin θ√

Σ

 , e1µ =

0,

√
Σ

∆
, 0, 0

 ,

e2µ =
(
0, 0,

√
Σ, 0

)
, e3µ =

−a

√
∆

Σ
sin2 θ, 0, 0,

r2 + a2√
Σ

sin θ

 , (11)
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with the common notation Σ(r, θ) = r2 + a2 cos2 θ, ∆(r) = r2 + a2 − 2mr,
where a = J

m is the angular momentum per unit mass. From the general
form of the six antisymmetric spin connection:

ω01
µ = (C(r, θ), 0, 0, B(r, θ)) , ω02

µ = (Q(r, θ), 0, 0, P (r, θ)) ,

ω03
µ = (0, U(r, θ), V (r, θ), 0) , ω12

µ = (0,W (r, θ), Y (r, θ), 0) , (12)

ω13
µ = (E(r, θ), 0, 0,H(r, θ) sin θ) , ω23

µ = (S(r, θ), 0, 0, R(r, θ)) ,

where B, C, U, V, E, H, P, Q, R, S, W and Y are functions of 3D radius r
and θ, we obtain in the case of F a

µν = 0 the following:

ω01
µ =

(
Σ∆′+2r(a2 sin2 θ−∆)

2Σ2 , 0, 0,−a sin2 θ
Σ∆′+2r(r2+a2−∆)

2Σ2

)
,

ω02
µ =

(
0, 0, 0,−

√
∆
Σ a sin θ cos θ

)
, ω03

µ =
(
0,−ar sin θ

Σ
√
∆

, a cos θ
√
∆

Σ , 0
)
,

ω12
µ =

(
0,−a2 sin θ cos θ

Σ
√
∆

,−r
√
∆
Σ , 0

)
, ω13

µ =
(
0, 0, 0,−r

√
∆
Σ sin θ

)
, (13)

ω23
µ =

(
a cos θ r2+a2−∆

Σ2 , 0, 0,− cos θ
(r2+a2)

2−∆a2 sin2 θ

Σ2

)
.

∆′ is the first derivative of function ∆ with respect to 3D radius r.

The non-null components of the strength tensor for a spinning source of
mass m are:

F 01
01 = U, F 20

01 =
a sin θ

2
√
∆

Z, F 13
01 =

a sin θ

2
√
∆

X, F 23
01 = Z,

F 10
02 = a sin θZ, F 02

02 =

√
∆

2
X, F 13

02 =

√
∆

2
Z, F 23

02 = a sin θT,

F 03
03 =

sin θ
√
∆

2
X, F 21

03 =
sin θ

√
∆

2
Z, F 03

12 =
Σ

2
√
∆
Z, F 12

12 =
Σ

2
√
∆
X,

F 01
13 = a sin2 θU, F 20

13 =
(r2 + a2) sin θ

2
√
∆

Z,

F 13
13 =

(r2 + a2) sin θ

2
√
∆

X, F 23
13 = a sin2 θZ, (14)

F 10
23 = sin θ(r2 + a2)Z, F 02

23 =
a
√
∆sin2 θ

2
X,

F 13
23 =

a
√
∆sin2 θ

2
Z, F 23

23 = sin θ(r2 + a2)T,

where

X =
2a2(Σ− 2r2 sin2 θ)− 2∆(Σ− 2r2)− r∆′Σ

Σ3
− 8λ2,
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Z = a cos θ
4r(r2 + a2 −∆)− 2rΣ+∆′Σ

Σ3
,

U =
(Σ− 4r2)(∆− a2 sin2 θ)− Σ2 + 2r∆′Σ

Σ3
− 4λ2, (15)

T =
(r2 + a2 −∆)(Σ− 4a2 cos2 θ)

Σ3
− 4λ2.

3. Deformed gauge fields and noncommutative analogous
metric tensor

The noncommutative gauge theory is described in terms of gauge fields
(or potentials) ω̂AB

µ (x,Θ) and field strengths F̂AB
µν that depend on de-

formation parameter of noncommutative coordinate algebra. We work
with the canonical deformation of the Minkowski space-time based on
[xµ, xν ]∗ = iΘµν with real constant deformation parameter Θµν = −Θνµ.
In this space noncommutativity is realized with the (associative) Moyal ∗-

product, ∗ = e
i
2
Θµν

←
∂µ
→
∂ν . Using the Seiberg-Witten map one expand the

noncommutative gauge fields, that transform according to the noncommu-
tative algebra, in terms of commutative gauge fields, that transform accord-
ing to the commutative algebra. In powers of Θµν , [5], (the (n) subscript
indicates the n-th order in Θµν) the tetrad fields, the spin connections and
the field strength tensor are:

êaµ(x,Θ) = eaµ(x) + e a
(1)µ(x) + e a

(2)µ(x) + . . .

ω̂ab
µ (x,Θ) = ωab

µ (x) + ω ab
(1)µ (x) + ω ab

(2)µ (x) + . . . (16)

F̂AB
µν (x,Θ) = FAB

µ (x) + F AB
(1)µν (x) + F AB

(2)µν (x) + . . .

The noncommutative field strength tensor (after the contraction to the
group ISO(3,1)) being:

F̂AB
µν = ∂[µω̂

AB
ν] + ω̂AC

[µ ∗ ω̂DB
ν] ηCD, (17)

for F a
µν = 0 (the undeformed one) and with the usual brackets for the

anticommutator, the first order expressions for the gauge fields are:

e a
(1)µ = − i

4
Θρσ

(
ωab
ρ ∂σe

c
µ + (∂σω

ab
µ + F ab

σµ)e
c
ρ

)
ηbc, (18)

ω ab
(1)µ = − i

4
Θρσ {ωρ, ∂σωµ + Fσµ}ab . (19)

The first order of field strength tensors can be write [6]:

F a
(1)µν = ∂[µe

a
(1)ν] +

(
ω ab
(1)[µ e

c
ν] + ωab

[µ e
c

(1)ν] + ωab
[µ ∗(1) ecν]

)
ηbc, (20)

F ab
(1)µν = ∂[µω

ab
(1)ν] +

[
ω(1)µ, ων

]ab
+

[
ωµ, ω(1)ν

]ab
+ [ωµων ]

ab
∗(1) . (21)
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In order to be applied for the particular tetrad fields, all formulas are im-
plemented in an analytical procedure conceived in GR Tensor II for Maple.
Instead to present the second order terms for the gauge fields and field
strength tensor as usually, they come in the particular form of analytical
procedure that contain suggestive notations.

>grdef(‘ev2{^a miu}:=(-I/8)*Tn{^rho^sigma}*(om1{^a^c rho}*
ev{^d miu,sigma}+om{^a^c rho}*(ev1{^d miu,sigma}
+F1a{^d sigma miu})+(I/2)*Tn{^lambda^tau}*
om{^a^c rho,lambda}*ev{^d miu,sigma,tau}+
(om1{^a^c miu,sigma}+F1ab{^a^c sigma miu})*ev{^d rho}+
(om{^a^c miu,sigma}+Fab{^a^c sigma miu})*ev1{^d rho}+
(I/2)*Tn{^lambda^tau}*((om{^a^c miu,sigma,lambda}+
Fab{^a^c sigma miu,lambda})*ev{^d rho,tau}))*eta1{c d}‘);

>grdef(‘om2{^a^b miu}:=(-I/8)*Tn{^rho^sigma}*
(om1{^a^c rho}*(om{^b^d miu,sigma}+Fab{^d^b sigma miu})+
(om{^a^c miu,sigma}+Fab{^a^c sigma miu})*om1{^d^b rho}
+om{^a^c rho}*(om1{^d^b miu,sigma}+F1ab{^d^b sigma miu})
+(om1{^a^c miu,sigma}+F1ab{^a^c sigma miu})*om{^d^b rho}
+(I/2)*Tn{^lambda^tau}*(om{^a^c rho,lambda}*
(om{^d^b miu,sigma,tau}+Fab{^d^b sigma miu,tau})
+(om{^a^c miu,sigma,lambda}+Fab{^a^c sigma miu,lambda})*
omega{^d^b rho,tau}))*eta1{c d}‘);

>grdef(‘F2a{^a miu niu}:= ev2{^a niu,miu}-ev2{^a miu,niu}+
(om{^a^c miu}*ev2{^d niu}-om{^a^c niu}*ev2{^d miu}+
om{^a^c miu}*ev{^d niu}-om2{^a^c niu}*ev{^d miu}+
om{^a^c miu}*ev1{^d niu}-om1{^a^c niu}*ev1{^d miu}+
(I/2)*Tn{^rho^sigma}*(om{^a^c miu,rho}*ev1{^d niu,sigma}
-om{^a^c niu,rho}*ev1{^d miu,sigma}+om1{^a^c miu,rho}*
ev{^d niu,sigma}-om1{^a^c niu,rho}*ev{^d miu,sigma})+
(-1/8)*Tn{^rho^sigma}*Tn{^lambda^tau}*
(om{^a^c miu,rho,lambda}*ev{^d niu,sigma,tau}
-om{^a^c niu,rho,lambda}*ev{^d miu,sigma,tau}))*eta1{c d}‘);

>grdef(‘F2ab{^a^b miu niu}:=
om2{^a^b niu,miu}-om2{^a^b miu,niu}+
(om{^a^c miu}*om2{^d^b niu}-om2{^a^c niu}*om{^d^b miu}+
om2{^a^c miu}*om{^d^b niu}-om{^a^c niu}*om2{^d^b miu}+
om1{^a^c miu}*om1{^d^b niu}-om1{^a^c niu}*om1{^d^b miu}+
(I/2)*Tn{^rho^sigma}*(om{^a^c miu,rho}*om1{^d^b niu,sigma}
-om1{^a^c niu,rho}*om{^d^b miu,sigma}+om1{^a^c miu,rho}*
om{^d^b niu,sigma}-om{^a^c niu,rho}*om1{^d^b miu,sigma})+
(-1/8)*Tn{^rho^sigma}*Tnc{^lambda^tau}*
(om{^a^c miu,rho,lambda}*om{^d^b niu,sigma,tau}
-om{^a^c niu,rho,lambda}*om{^d^b miu,sigma,tau}))*
eta1{c d}‘);

The noncommutative analogue of the metric tensor is defined using the
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hermitian conjugate of tetrads: ĝµν = 1
2ηab

(
êaµ ∗ êb∗ν + êbν ∗ êa∗µ

)
. The non-

commutative scalar analog to F is F̂ = êµa ∗F̂ ab
µν ∗ êνb , where êµa is the ∗inverse

of êaµ. The part of analytical procedure for these quantities can be read in
[10].

For a point like source of mass m and constant electric charge Q with a r-θ
noncommutativity we obtain

ĝ00 = −A2 − A2

4

(
2rA′3

A + 2A′2 + 5rA′A′′ +AA′′ + rAA′′′
)
Θ2 +O(Θ4)

ĝ11(x,Θ) = 1
A2 + 1

4
A′′

A Θ2 +O(Θ4) (22)

ĝ22(x,Θ) = r2 + 1
16

(
A2 + 12rAA′ + 4r2(4A′2 + 3AA′′)

)
Θ2 +O(Θ4)

ĝ33(x,Θ) = r2 sin2 θ + 1
16

(
cos2 θ+

+4sin2θ(2rAA′ − rA′

A + r2AA′′ + 2r2A′2)
)
Θ2 +O(Θ4).

For arbitrary Θµν , the deformed metric is not diagonal even if the commu-
tative one has this property [7], [8].

Working with r-t noncommutativity for the Robertson Walker case we ob-
tain a noncommutative metric tensor identical with [9] and for r-θ noncom-
mutativity the noncommutative metric tensor is:

ĝ00 = −1 + Θ2 aär
16(1−kr2)

(3− 7kr2 − 4r2ȧ2) +O(Θ4)

ĝ11 =
a2

1−kr2
−Θ2 a

2(ȧ2(5−kr2(1+kr2))+4k(1−kr2))
16(1−kr2)3

+O(Θ4)

ĝ22 = r2a2 +Θ2 a2

16

(
3kr4(ȧ2+k)+1

1−kr2
− 26r2(ȧ2 + k)

)
+O(Θ4) (23)

ĝ33 = r2a2 sin2 θ +Θ2 a2

16

(
5 cos2 θ+

+ r2ȧ2(20kr2+4r2ȧ2−9)+4(4k2r4−3kr2+1)
1−kr2

sin2 θ
)
+O(Θ4)

ĝ01 = Θ2 a2ȧär
16(1−kr2)2

(3kr2 − 2) +O(Θ4)

If we treat the noncommutative analogue of the metric tensor as a standard
metric tensor we can examine the deformed space time for different scale
factor in this case of constant noncommutative parameter.

4. Conclusions

Noncommutative deformations of general relativity solutions through the
gauge theory formalism for gravity were the aim of the analytical procedure
construction. The analytical procedure with GRTensorII under Maple con-
ceived, allows to analyze the influence of noncommutative parameter choice
on noncommutative analogue of the metric tensor and further to fit it to
find valuable interpretations of noncommutative corrections. Being based
on recursive formulas, the procedure can be extended. The corrections are
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followed until second order for tetrad fields, spin connections, field strength
tensor, scalar F and thus for the invariant action, but, in the paper are
presented only for noncommutative analogue of the metric tensor. The
corresponding deformed metric reveals the modified structure of gravita-
tional field: in the case of black holes and in the case of isotropic homoge-
neous Robertson-Walker space-time of the (commutative) gauge theory of
gravitation. When we treat it as standard metric tensor, for non-rotating
black-hole it can be observed that the spherical symmetry is brooked, while
for the Robertson-Walker the isotropy (with respect to one world line).

In this paper we focused on the technical specific details of noncommutative
corrections computation for the chosen cases without many details about
the noncommutative theory and about physical interpretations.
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